Appendix A

Public Input on Priorities

Technical Advisory Group Input (TAG)

The TAG for the U.S. 101 Hopland Main Street Corridor Engineered Feasibility Study included over 20 stakeholder and community representatives to guide and inform the public outreach and study process. All meetings were held at the Hopland Fire Station.

The following community members and stakeholders participated in one or more of the TAG meetings and community workshops:

- Hopland Band of Pomo Indians
- Mendocino County Sheriff (Tom Allan)
- Mendocino County Supervisor, 5th District
- Mendocino County Health Department
- Walk and Bike Mendocino
- Mendocino County Public Works and Transportation
- Mendocino County Air Quality Management District
- Hopland Fire Protection District
- California Highway Patrol
- Mendocino County Office of Education
- Real Goods
- Brutocao Family Vineyards
- Golden Vineyards
- MendoVito
- Invited Real Goods and Solar Living Institute
- Hopland Research and Extension Center
- Caltrans District 1
- Mendocino Council of Governments

The schedule and focus of the TAG Meetings included:

November 19, 2014 – Discussion of key issues to be addressed by the study, identification of stakeholder representatives to engage and the best ways to advertise events and encourage public participation.

January 7, 2015 – Planning the community workshop activities and schedule for February and discussion of ways the TAG could help inform the public.

March 10, 2015 – Following the February community workshop, review of proposed improvements developed by the project team based on the community input.

Notes from the three meetings are below.

November 19, 2014 2:00 p.m. – 3:30 p.m. Hopland Volunteer Fire Station

Meeting Notes

Phil Dow, MCOG, Executive Director, gave a brief introduction.

Steve Weinberger, W-Trans, provided a presentation and overview of the project. Josh Meyer, Local Government Commission, provided information and requested suggestions for public outreach. He noted the project will focus on community input.

TAG comments/questions included:

- Is the bypass still an option? What's the status?
- What about the directionality of speeds specifically regarding the northbound approach entering Downtown Hopland?
- The bypass if it happens is an expensive long term project. The current project addresses what can be done sooner and would work regardless if a bypass ever occurs. The project existing conditions report is still in draft form.
- Need sidewalk improvements pedestrians noted tripping during community events.
- Are school bus stops included in inventory of existing conditions? Existing locations for buses need to be shown on a map.
- School buses are flexible and can could change drop off and pick up location. The existing major bus stop is at the (now closed) elementary school parents drop off there.
- It was noted that funding from this project/study are for planned alternatives, but not for construction of the improvements themselves.
- The bridges on 175 over the Russian River and over Dooley Creek are not safe, lack pedestrian facilities.
- The study should consider or map surrounding uses/facilities/generators to show where population and travel demand is in town.
- What are the needs for community, seasonal or special events?
- There are wine tasting events. Contact the Mendocino Planning Department for event schedule.
- The proposed MendoVito project was mentioned, but it was noted that it is located outside the scope of this study.
- At the north end of town pedestrians are crossing on unmarked locations this is especially a concern for visiting tourists.

- At the east leg of US 101/SR 175 the crossing distance is very long and drivers are distracted because of traffic concerns (Turning conflicts).
- Keep in mind the school bus stops at Superette at 7:30 a.m. on the west side of US 101 and tops on the east side on the way back. Will need to follow-up with the school district re: the bus stop – it doesn't seem like a designated stop.
- There are safety/ rear-end collision issues at the solar living center driveway.
- Need to follow-up with Caltrans regarding speed survey data.
- There was discussion of potential engineering/traffic calming solutions: use design elements to "self-enforce" for speed limits.
- Is there a need for bike lanes on SR 175? Children use bikes/walk from Old Hopland to Downtown Hopland.
- Pedestrians on the north end of US 101 in the study area connect MTA to bike facilities. There are long-term plans for a trail connecting Hopland to Ukiah. This should be considered in concept designs. Farm workers & teenagers walk along the RR tracks where the trail will go.
- Possible dates and locations for the charrette/two-day community workshop were discussed.
- Another TAG meeting will be held in advance of the charrette. A total of 4 meetings are expected with the TAG.
- Discussion ensued about opportunities publicize community meetings. Outlets and ideas include:
 - Bluebird Café
 - Market
 - Post office
 - Local public radio station and Spanish radio station/show
 - Forward flier to the monthly winery group meeting
 - Send out the flier/fact sheet to schools
 - Ukiah Valley Trail Group and Walk & Bike Mendocino
- It is important for a simplified flier for posting around town. The current draft is more of a fact sheet.

The next TAG meeting is scheduled for 2 pm on Wednesday, January 7.

January 7, 2014 2 p.m. – 3 p.m. Hopland Volunteer Fire Station

Meeting Notes

Steve Weinberger recapped the previous TAG meeting, and the study area project goals and objectives.

Steve and Josh Meyer reviewed the plans for upcoming multi-day workshop/design charrette, scheduled February 11 and 12 at the Brutocao schoolhouse.

Charrette Components include:

Day 1

- Outdoor walking audit
- Design workshop
- Warm-up activities, vision, participants, design tables, visually-driven, maps, identify problems, solutions.

Day 2

- Overview/summarize map mark-ups
- Open studio
- Closing presentation to confirm all issues have been addressed

Does everyone need to participate on both days?

• It would be ideal to have the public participate on both days.

Do all TAG members need to attend all portions of charrette?

• It would be ideal if they can attend table exercise at least.

Following the February charrette, there will be another community meeting to present the full draft plan. Need to set a date for the follow-up workshop to announce at the charrette.

The next TAG meeting will be 1-2 months after the charrette to review proposed designs based on the community input.

Will there be a prioritization of project components?

• Yes – some projects will be long-term vs. short-term, based on cost and potential funding sources.

How will the public be reached?

- Location is the "Schoolhouse Plaza," highly visible location
- Fliers being produced in English & Spanish
- Post fliers at post office, other public places
- Banner in front of Brutocao Schoolhouse Plaza
- Social Media Facebook posting, sheriff's office to post on Facebook
- Email list from Sherriff (has list from community meetings)
- Yahoo groups 2,000 subscribers.
- Sherriff is making a PSA on radio.

- Get full media list from MCOG (KZYX local radio and community calendar and Spanish)
- Walk & Bike Mendocino Facebook page.
- Incentivize youths? Engage youths to be involved reach out through Ukiah USD. Get list through school.
- See about giving bus driver fliers to distribute on bus. Might be good timing. Find out bus dropoff time.
- Contact Director of Transportation to see if it is possible to give fliers to school students.
- Spanish outreach translation fully available for all activities.

What are the types of alternatives and improvements that will be presented/considered? General Improvements discussion:

- Provide examples of alternatives to the community at the charrette.
- Include parking on-street parking, "organized" parking?
- Businesses are always concerned about losing parking.
- Sufficient access for residences/parking driveways? Maintain access.
- Provide more technical guidance on constraints and opportunities on US 101/SR 175 to public.

Are there any plans with the bridges?

• Caltrans says no – no plans to improve bridges. This will be a constraint.

HAWK pedestrian signal warrants?

• Caltrans says one crosswalk meets the warrants for installing a HAWK signal

At charrette will present some alternatives – anything missed?

• Concerns with bulb-outs/ADA due to cross-slope issues

For walking audit, one walking group will check Old Hopland since it's significantly different.

At each table, need to provide a toolbox with description/pictures.

Make sure to use local photos

Know when to say a solution may not work.

Provide engineering constraints to public.

Make sure to remind them that this is a planning process.

Caltrans will be paving as soon as in the next year, but not through Downtown because of the cross-slope issues with existing crosswalks.

Josh will email out the next TAG meeting date in early April.

Need to update the flier – call it a workshop. People unfamiliar with the term charrette.

March 10, 2015 2 p.m. – 3 p.m. Hopland Volunteer Fire Station

Steve Weinberger and Josh Meyer reviewed the community process and input at the February workshops. Steve presented the draft concepts and recommendations.

Challenges for roundabout implementation: funding, approval from Caltrans, challenges for trucks.

It was noted that three roundabouts are being built in Lake County.

Need to address parking and wayfinding. In Center Street area, parking is available behind hotel? Other off-street parking possibilities?

There is not much northbound bicycle activity on 101, north of SR 175. Eliminate the bicycle lanes north of SR 175 and provide wider sidewalks. An option could include wider sidewalks on 101 with a rail trail between SR 175 and 101 crossing at Hewlett Sturtevant Road.

W-Trans will revisit the accident history for 101/175 intersection to justify improvements.

County staff requested that it be noted that the County is not part of this study and improvements need to be in Caltrans ROW.

Need to do more work on criteria for prioritizing projects.

Would a cycle track work in old Hopland, with parking next to the travel lane?

Fill in sidewalk gaps in old Hopland with reconstruction in the downtown core.

Will the roundabout require additional space?

• May require a small area from the northeast corner.

What are potential objections to roundabouts?

- Doesn't meet warrants or is not a safety issue, so Caltrans unlikely to build
- If the community wants it, would need to come out of regional funds
- If there is an accident history, could be a candidate for HSIP funding

Main point: intersection at 101/175 is a large and detracts from pedestrian environment and community appeal. Roundabout could help with gateway, look, safety and walkability. Whatever solution – need to improve this area.

Hopland Main Street Corridor Study Public Workshop: Walk and Design Solutions Sign-In Sheet

Brutocao Schoolhouse Plaza

*Contact information removed in web version for privacy.

Name	Affiliation	Phone #*	Email Address*
Andrew Blake	MendoVito		
Anna Beuselink	Campovida		
Chris Placeway	Resident & work in Hopland		
Christa Roderick	AMI and Resident		
Claire Arrowsmith	Solar Living Institute - Caretaker		
Claude Lewer	Mendovito		
Cory Brown	Hopland Resident		
Dan Hamburg	Board of Supervisors		
David Roderick	Property Owner		
Divora Stern	Mendocino Co. Permaculturist		
Don Moser	Solar Hydrogen		
Greta Kanne	Willits Main Street Merchants and Willits Resident		
Jan McGourty	Neighbor		
Jason Caudillo	Mendocino County Sheriff		
Jeff Yokim	Main Street Merchants		
Joan Norry	Hopland Resident		
Julie Golden	Golden Cellars - Downtown Hopland Property Owner		
Kate Frey	Landscape Design		
Kathy Richter	Resident		
Lauren Sinnott	County Point Arena		
Leila Doyle	MCOG/Hopland Resident		
Linda	Willists Resident		
Loretta Ellard	MCOG		
Mike William	Graziano Wines		
Patti Black	County Department of Transportation		
Phil Dow	MCOG		
Rayfred Duddles	Hopland Resident Hwy 101 & 175		
Sandra Rosas	Caltrans, District I		
Sherri Haldorson	Resident & work in SBMC Hopland		
Steve Brutocao	Brutocao Cellars		
Tasha Ahlstrand	Caltrans, District I		
Zack Reichenbach	Solar Living Institute - Caretaker		

February 11, 2015 4:00 p.m. – 8:00 p.m.

Hopland Main Street Corridor Study Public Workshop: Presentation of Initial Concepts Sign-In Sheet

February 12, 2015 6:00 p.m. – 7:30 p.m. Brutocao Schoolhouse Plaza

*Contact information removed in web version for privacy.

Name	Affiliation	Phone #*	Email Address*
Adam Randall	UDJ		
Anna Beuselink	Campovida		
Claire Arrowsmith	Solar Living Institute - Caretaker		
Connie Rosetti			
Cory Brown	Hopland Resident		
Gary Breen	Campovida		
Glenn McGourty	UC Cooperative Extension Center - UC Hopland Research &		
Glump Simmons	Landowner		
Jan McGourty	Neighbor		
Lee Halderson	Resident		
Leila Doyle	MCOG/Hopland Resident		
Linda Helland	Walk + Bike Mendocino		
Loretta Ellard	MCOG		
Nina Kaiser	Resident		
Patti Black	County Department of Transportation		
Phil Dow	MCOG		
Robert Rosetti			
Ryan Keiffer			
Sherri Haldorson	Resident & work in SBMC Hopland		
Tasha Ahlstrand	Caltrans, District I		
Toril Hayden			
Zack Reichenbach	Solar Living Institute - Caretaker		

Public Input on Priorities

At the public workshop, attendees were presented with the list of project components and asked to identify their top three desired projects. The results are summarized in the table below.

· · · · · · · · · · · · · · · ·	-
Proposed Improvements	# of Votes
I. Roundabout at US 101/SR 175	21
2. Relocated US 101/Center Crosswalk with Curb Extensions and Regrade	15
3. Added Landscaping and Trees at Selected Locations	9
4. Colorized shoulders in Old Hopland	8
5. Entry Features/Median &Tree-Lined Entry	7
6. Sidewalk Reconstruction in High Pedestrian Area	5
7. New Southbound left-turn lane on US 101 into Real goods	4
8. Additional Speed Reduction Medians on US 101, North/South of Mtn. House	4
9. Bike Lanes on SR 175 between US 101 and SR 175 Roundabout	4
10. Paved Parking Aisles in Old Hopland	3
11. US 101/Center Crosswalk Re-grade with Flashing Lights and Signs	2
12. Buffered Bike Lanes on US 101 between North End and SR 175	2
13. Truck Parking on US 101 between SR 175 and Feliz Cr Bridge	I
14. Bicycle Parking	I
15. Enhanced Crosswalks North/South of SR 175	I
16. Standard Bike Lanes on US 101 between SR 175 and Real Goods	I
17. Benches	I
18. Reduced intersection size at US 101/SR 175	0
19. Pedestrian Scale Street Lighting	0
20. New Crosswalk on Mountain House Near US 101	0

Table IHopland Main Street EFS – Workshop Voting Results

Hopland Main Street EFS - Workshop #2 (June 11, 2015)

*Contact information removed in web version for privacy. NAME AFFILIATION **TELEPHONE*** EMAIL* Mike Milovina Resident Jim Milovina Resident Leila Doyle Resident Andrew Blake Nendovilo Lisa Davey-Bates MCOG Patti Black County DOT Len Brutolao Resident D.A. Nelson Hopland Howard Dashiell Mendocino DOT Kathy Richter Resident Melissa Smith Resident Gary Smith Resident Chris Keiffer Resident Tod Kong Resident Toril Hayden Hoplander lyesha Miller Hopland Band of Pomo Indians John Schaeffer **Resident-Business Rayfred Duddles** Hopland Resident Donald L. Moser Rent Goods Nina Kaiser Hopland Resident Anna Bellsehnk Hopland Resident Hopland Resident Kate Frey Ken Richter Hopland Resident Richard Henwood Hopland Resident Lauren Sinnott Dan Hamburg Michele Savoy Hopland Resident Sherri Haldorson Hopland Resident Cindy Cunningham Hopland Co-Housing Mike Killen Hopland Co-Housing Susan Knopf Citizen Marissa Leonard Hopland Resident Chris Plawlavy Hopland Phil Dow MCOG Loretta Ellard MCOG **Rick Seaferer** Resident Resident Gary J Rosetti Tom Killian

Hopland Main Street EFS - Workshop #3 (September 10, 2015)

	*Contact information removed in web version for privacy.
NAME*	EMAIL*
Harold Montgomery	
Mike Milovina	
Jim Milovina	
Patti Black	
Adam Randall	
Glenn and Jan McGourty	
Lisa Davey-Bates	
Toril Hayden	
Gary J Rosetti	
Chris Plawlavy	
Lauren Sinnott	
Dan Hamburg	
John Schaeffer	
Ava Keng	
Christa Valentin	
Roger Wheeler	
P. Goings	
Julianne R.	
David Rodenck	
Silvio Queirolo	
Robert Lee	
Charles Witherell	
Cesar Alvarado	
Pat Howard	
Gary and Melissa Smith	
Nina Kaiser	
John C. Oliver Jr.	
Sheri Rodriguez	

Septem Proiect I	ber 10, 2015 Community Meeting Ranking Dot Exercise Results			
Rank	Project Ranking	Agree	Disagree	Additional Notes
	Radar feedback signs on US 101 at the			
	north and south ends of Central			Two people think it should be ranked #3, One person thinks it should be ranked #2, One person thinks
7	Hopland	18	0	it should be ranked #1
	Additional medians along US 101			One person thinks it should be ranked #3, One person thinks it should be ranked #5, One person
2	through Central Hopland	11	0	thinks it should be ranked #8
	Colorized shoulders in Old Hopland			Two people think it should be ranked #5, Two people think it should be ranked #1, One person thinks
m		14	2	it should be ranked #2, One person thinks it should be ranked #11,
	Sidewalk reconstruction through			One person thinks it should be ranked #7, Two people think it should be ranked #3, One person thinks
4	Central Hopland	13	0	it should be ranked #6
	Bike lanes on US 101 in Central Hopland			One person thinks it should be ranked #2, One person thinks it should be ranked #8, One person
ŋ		11	2	thinks it should be ranked #7
	Relocated US 101/Center Drive			
	crosswalk with curb extensions and re-			One person thinks it should be ranked #4, One person thinks it should be ranked #6, One person
9	grading	13	0	thinks it should be ranked #10
	Reduced tee-intersection at US 101/SR			
2	175	9	6	One person thinks it should be ranked #4, One person thinks it should be ranked #5
	Bike lanes on SR 175			One person thinks it should be ranked #4, One person thinks it should be ranked #6, One person
∞		12	2	thinks it should be ranked #11
	Entry features on US 101 at the north			One person thinks it should be ranked #4, One person thinks it should be ranked #9, Two people think
6	and south ends of Central Hopland	11	0	it should be ranked #3
	Roundabout at US 101/SR 175			Seven people think it should be ranked #1, Two people think it should be ranked #2, One person
10		26	4	thinks it should be ranked #3, One person thinks it should be ranked #5
	New southbound left-turn lane into			
	Real Goods Solar Living Center on US			
11	101	18	0	Eight people think it should be ranked #1, One person left comment saying, "danger safety issue!!"

Appendix **B**

Related Plans

General Plan

The Mendocino County General Plan adopted in August 2009 provides the framework for transportation planning within the county. The General Plan established goals that are concerned with the safe and efficient movement of people and goods in and around the county. Transportation-related principles, goals, and policies included in the Mendocino County General Plan that are relevant to the Hopland area engineered feasibility study include the following:

Principles

Principle 2-1d: Mendocino County is committed to the health and well-being of all its residents, and shall implement land use plans, policies and programs that promote health.

• The County will strive to promote community health for all neighborhoods, with particular attention to disadvantaged communities and those that have been identified as lacking in amenities.

Principle 2-3a: Encourage and empower local communities and organizations to engage in local planning and community improvement consistent with this General Plan's goals and policies.

Principle 2-3b: Improve the effectiveness of the planning and development process in achieving General Plan and community objectives.

- Promote open, inclusive public planning and development processes.
- Provide consistency and minimize conflicting mandates by integrating inter-agency planning and regulatory processes.
- Strive to make regulation and development decisions predictable, fair and cost effective.
- Continue to improve the coordination of County departments and local agencies and their functions to better facilitate the development process.
- Continue to explore opportunities to streamline the development process.

<u>Goals</u>

Goal DE-7 (Infrastructure): Basic infrastructure—roadways, water and sewer service, schools, libraries, internet access, etc.--sufficient to support existing and future development, in place when needed, and fully funded both initially and on an ongoing basis.

Goal DE-8 (Transportation): A balanced and coordinated transportation system that:

- Is an integrated and attractive part of each community.
- Is functional, safe and pleasant to use, and supports emergency services.
- Provides a choice of modes accessing and connecting places frequented in daily life.
- Promotes compact development and infrastructure efficiencies.
- Is consistent with principles of sustainability and conservation of resources.

- Is not solely dependent on the continuation of fossil fuel resources.
- Can be maintained, used, and justified if available energy sources change during the duration of the General Plan.

Goal DE-9 (Road Systems): A countywide road system that provides safe, efficient and attractive access, coordinated with interstate, state, local and area-wide systems.

Goal DE-10 (Pedestrian & Bicycle): Functional, safe and attractive pedestrian and bicycle systems coordinated with regional and local transportation plans and other transportation modes.

Policies

Transportation Policies

Policy DE-126: Provide for multiple transportation modes and functions within transportation corridors and rights-of-way constructed by project developers or using appropriate grants funding.

Policy DE-127: The County's transportation policies and funding priorities shall emphasize use of multiple transportation modes with the acknowledgment that general transportation operation and maintenance funding is barely adequate for existing roadway safety maintenance. Emphasis should be placed on securing additional grant funds to support multimodal improvements in the right-of-way.

Policy DE-128: Ensure that transportation infrastructure accommodates the safety and mobility of motorists, pedestrians, bicyclists, and persons in wheelchairs.

- Action Item DE-128.1: Establish public works standards to implement policy DE-128.
- Action Item DE-128.2: Develop and implement standards to ensure that roadways and other transportation infrastructure are restored to a safe condition after repair work, utility installation, or other activity.

Policy DE-130: The County will coordinate with state and local agencies to ensure that transportation plans, standards and improvements are consistent and compatible across jurisdictional lines.

- Action Item DE-130.1: The County will work with Caltrans and MCOG to project future growth on roadways in the county, and will work cooperatively to plan for future roadway needs and mitigation for impacts resulting from growth in the unincorporated area.
- Policy DE-131: Development impact fees, assessments, and other secured funding sources may be required to fund transportation improvements to provide an adequate transportation system or offset transportation impacts.
 - Action Item DE-131.1: Maintain short and long-term capital improvements programs for transportation facilities, consistent with adopted plans.

Policy DE-132: Ensure priority County transportation and multimodal improvements are reflected in updated Regional Transportation Plans and other transportation planning documents. Encourage new project development proposals to include multimodal improvements, and the funding mechanisms needed to maintain those improvements.

Policy DE-133: Consider community objectives in prioritizing transportation improvements funding.

Policy DE-135: Evaluate and work to reduce the air quality impacts of all proposed transportation projects.

Policy DE-136: The County will ensure that development projects which propose direct access to a state highway have legal entitlements for such access.

- Action Item DE-136.1: The County will refer to Caltrans all development applications which propose direct access to a state highway. Affected roadways that need to meet the most current Caltrans requirements include all or portions of the following:
 - State Route I
 - State Route 20
 - Hwy I0I
 - State Route 128
 - State Route 253
 - State Route 162

Policy DE-138: The County supports the use of traffic calming techniques, where appropriate, to improve safety for motorists, bicyclists, pedestrians, and others. Special attention will be given to safety on roadways which provide access for children to school.

Policy DE-141: The County encourages development using existing roads with available capacity prior to locating development in areas that require new transportation facilities.

Policy DE-142: Encourage mixed-use, infill and increased density development along multi-modal transportation corridors, focused on community areas.

Policy DE-143: Coordinate land use density and intensity with the functional classifications and capacities of the road system.

Policy DE-144: Prior to allocating funds for road widening projects, consider alternatives, such as enhanced system efficiency and alternative transportation.

Policy DE-145: Maximize the compatibility of major highway and road realignments, extensions and capacity-increasing projects with community objectives, and minimize impacts on commercial areas, neighborhoods, and resources.

Policy DE-146: The County supports the construction of the Willits and Hopland bypasses consistent with the standards outlined in the community policies section of the General Plan.

Policy DE-149: Major development applications shall include traffic studies to evaluate and mitigate cumulative effects on network level of service and safety.

Policy DE-150: The County supports community programs to reduce traffic volumes and single-occupant vehicles during peak hours.

Pedestrian and Bicycle Systems Policies

Policy DE-152: The County shall ensure that bicycle facilities are safe, attractive, and useful for both recreational and commuting cyclists. This shall include:

- Requiring that bicycle facilities be designed in accordance with the State Bikeway Design Criteria.
- Periodically reviewing, and updating if needed, street standards to accommodate bicycle lanes where indicated on the Bikeway Master Plan.
- Designing bridges, over passes, under passes, etc. to be compatible with bicycle travel. Considering bicycle safety when implementing improvements for automobile traffic operations.
- Provide an information/education program to encourage use of the system and to promote safe riding.

Policy DE-153: Provide pedestrian and bicycle ways along public roadway systems consistent with community area goals and policies and where sufficient right of way is available.

 Action Item DE-153.1: Prepare a plan identifying future pedestrian and bicycle routes and their implementation, including the use of a portion of traffic impact fees to fund pedestrian and bicycle systems.

Policy DE-154: Include bicycle and pedestrian facilities, where feasible, when County roads, bridges, buildings, and other facilities are renovated or replaced.

Policy DE-155: Connect pedestrian, bicycle and trail routes to form local and regional networks. Link pedestrian, bicycle and trail routes with other transportation modes to maximize local and regional non-motorized transportation.

• Action Item DE-155.1: Work with trails groups to promote and construct more trails for walking, bicycling, and pedestrian use.

Policy DE-156: Concentrate pedestrian improvements along school and transit routes, in areas of established pedestrian activity, and adjacent to sites serving senior citizen and/or persons with disabilities.

Policy DE-157: When development occurs, require installation of pedestrian and bicycle systems or, if infeasible, the payment of in-lieu fees to fund improvements to bicycle and pedestrian facilities.

Policy DE-158: Promote bicycle use and safety through development standards, education, promotional activities, incentives, and safe bicycle parking, facility design and maintenance.

Policy DE-159: Preserve abandoned Railroad right-of-way for trail use and investigate the feasibility of locating bicycle paths on unused portions of existing rights-of-way.

Transit Systems Policies

Policy DE-160: Increase the attractiveness and use of energy-efficient forms of transportation such as public transit, walking, and bicycling through a variety of means, including promoting transit-oriented development in existing cities and urbanized areas and the use of transit by visitors to the county.

• Action Item DE-160.1: Adopt development standards that facilitate public transit and alternative transportation modes in multi-modal transportation corridors.

• Action Item DE-160.2: Adopt zoning and development standards allowing increased land use densities and intensities proximate (generally within 0.5 mile) to multi-modal transportation corridors.

Policy DE-161: The County will demonstrate leadership in the implementation of programs encouraging the use of alternative modes of transportation by its employees, as well as the use of alternative fuels. Example programs may include:

- Preferential carpool parking and other ridesharing incentives;
- Flexible working hours or telecommuting where consistent with job duties and customer service needs;
- A purchasing program that favors hybrid, electric, or other energy-efficient vehicles;
- Properly matching trips to the most efficient vehicle to minimize fuel expenditures;
- Encouraging pedestrian/bicycle trips between County facilities where distances and physical ability permit;
- Assisting in the development of demonstration projects for alternative fuel technologies such as ethanol, hydrogen, and electricity;
- Secure bicycle parking; and
- Transit incentives

Policy DE-162: The use of public transit and multi-modal transportation systems in community areas should be emphasized.

• Action Item DE-162.1: Work with transit providers to coordinate transit routes, frequency of service and facilities throughout the county.

Rail-with-Trail Corridor Plan

The Rail-with-Trail Corridor Plan (Plan), adopted in May 2012, provides a plan to implement multi-use trails on the portion of Northwestern Pacific Railroad in Mendocino County and northern Sonoma County, which is no longer used by railroad companies. The Plan provides an existing conditions report and identifies priority segments to be developed along the 103-mile long corridor. The portion of the corridor in Hopland were identified as segments to be included in Phase II, which would be the five to ten year part of the project. The goals and vision for the corridor are:

GOAL I: Improve Non-Motorized Mobility and Accessibility

Expand and enhance non-motorized mobility for persons living in, working in, and visiting Mendocino County, including access to and connections with other transportation modes.

GOAL 2: Preserve the Transportation System

Design a RWT that will efficiently utilize the NWP corridor, support the region's current blueprint planning efforts which calls for improved options for bicycling, walking, and equestrians, and allow for future rail service along the NWP line.

GOAL 3: Enhance Public Safety and Security

Design the RWT segments to respond to safety and security needs as well as neighborhood privacy concerns.

GOAL 4: Reflect Community Values

Promote community values and identity, including use by multiple user groups, such as bicyclists, pedestrians, and equestrians (where feasible) and incorporate public involvement in decision making processes.

GOAL 5: Enhance the Environment

Assist in greenhouse gas reduction by encouraging and facilitating non-motorized vehicle trips.

GOAL 6: Allow for Regional Connections

Provide non-motorized connections to adjacent streets and land uses including transit, shopping, institutional, office, and residential areas.

GOAL 7: Implementation Funding

Develop a funding, financing, and implementation strategy identifying eligible grant sources and/or potential development requirements supporting construction.

Mendocino County Regional Transportation Plan (2010)

The Mendocino County Regional Transportation Plan, adopted in 2011, was created to provide a 20 year plan for future transportation needs in the area and involves all levels, from the federal government to local and tribal governments, to individual stakeholders. Some goals, objectives, and policies of the Regional Transportation Plan include:

Complete Streets

Goal: To improve our public spaces so the street, road, and transportation system meets the needs of all surface transportation modes, including vehicular, bicycle, pedestrian, and transit.

- Objective: Incorporate bicyle, pedestrian, and transit improvements, unless the roadway is exempt by law, or the project receives a specific waiver authorized through a public, high-level process.
 - Policy: Coordinate funding programs to provide multiple components of an infrastructure project when appropriate.
 - Policy: Seek funding sources for multiple modes of transportation.
 - Policy: Facilitate coordination between local transportation agencies and Mendocino Transit Authority.
 - Policy: Consider waivers in cases where environmental issues constrain improvement options, transit service is not planned or currently provided, or where the benefit/cost ratio of providing bike/pedestrian improvements is low (as would be expected in isolated rural areas).

- Objective: Provide new bicycle, pedestrian and transit facilities on existing streets and roads where none exist.
 - Policy: Seek funding to fill gaps in bicycle and pedestrian facilities adjacent to roadways and provide bus stop improvements along fixed transit routes.

State Highway System

Goal: Provide safe, efficient transportation for regional and interregional traffic while maintaining quality of life for residents of the county.

- Objective: Provide timely improvements to the Principle Arterial (major highway) system consistent with statewide needs and regional priorities.
 - Policy: Identify improvements to the major corridors consistent with route concepts.
 - Policy: Seek finding for priority improvements identified on major corridors and interregional routes, including the consideration of RIP programming and pursuit of other State and Federal funding sources.
 - Policy: Identify, prioritize, and seek funding for access improvements (interchanges and intersections) to the Principal Arterial System.
 - Policy: Consider funding participation in staged widening of two-lane segments of US 101 south of Ukiah.
- Objective: Provide a system of Minor Arterial Highways consistent with statewide needs and local priorities.
 - Policy: Encourage State funding for maintenance of Minor Arterial Highway segments within the County.
 - $\circ~$ Policy: Coordinate with Caltrans to identify and program needed operational and safety improvements.
 - Policy: Consider local funding partnership to correct safety concerns as appropriate.
- Objective: Provide safe traveling conditions on all State Highways within Mendocino County.
 - Policy: Prioritize projects that correct safety issues (particularly in locations with high accident rates) for support and funding consideration.
- Objective: Provide for efficient, free-flowing travel on all State Highways in Mendocino County.
 - Policy: Maintain a minimum Level of Service C on rural segments of the Principal Arterial System and a minimum Level of Service of D in "urbanized" areas as measured by the current Highway Capacity Manual.
 - Policy: Maintain a minimum Level of Service D on the "main line" at all interchanges and atgrade crossings on the State Highway System.
 - Policy: Consider programming RIP funding for projects that maintain or improve Level of Service to standards identified herein.

- Objective: Balance the needs for transportation improvements with quality of life for residents of and visitors to the region.
 - Policy: Consider context sensitive solutions when planning and designing highway improvements, particularly in communities where a State highway serves as "Main Street."
 - Policy: Consider "complete streets" strategies when planning major corridor improvements that include the needs of bicyclists, pedestrians, and transit users.
 - Policy: Pursue multiple funding sources (STIP, TE, SR2S, BTA, etc.) on corridor projects to fund multiple modal aspects of the project.

Local Streets and Roads

Goal: Provide a safe and efficient transportation network, connecting local community roads and major transportation corridors and meeting the transportation needs of the communities served by these facilities.

- Objective: Identify and prioritize capital improvements to the regional road system.
 - Policy: Conduct planning activities, such as development of CIPs, to identify critical, high priority improvements.
 - Policy: Seek funding for needed improvements, including consideration of RIP funding and other state and federal grant sources.
 - Policy: Prioritize improvements to principal local roadways, particularly those providing primary access to communities, those that connect to the State Highway system, or those that relieve the impact on the State Highway system.
- Objective: Balance the need for safety and operational improvements with the need for maintenance of the existing system.
 - Policy: Maintain a Pavement Management Program to analyze and determine the best use for funds available for pavement maintenance and rehabilitation.
 - Policy: Assist local agencies in identifying, prioritizing, and funding safety improvements on local streets and roads systems.
 - Policy: Seek reliable funding sources for ongoing maintenance and rehabilitation efforts in order to protect investment in existing system.
- Objective: Provide for alternative forms of transportation on local street and road networks.
 - Policy: Consider "complete streets" strategies when planning and implementing local street and road improvements, including the addition/improvement of bicycle and pedestrian facilities and transit stops.

Non-Motorized Transportation

Goal: Provide a safe and useable network of bicycle and pedestrian facilities throughout the region as a means to lessen dependence on vehicular travel and improve the health of Mendocino County's residents.

- Objective: Maximize funding opportunities for local agencies to develop and construct bicycle and pedestrian facilities,
 - Policy: Update Regional Bikeway Plan on a timely basis to ensure local agency eligibility for Bicycle Transportation Account funds and other grant programs.
 - Policy: Provide support to local agencies in pursuing grant funding such as Safe Routes to School and the Bicycle Transportation Account.
 - Policy: Continue to reserve and allocate 2 percent of Local Transportation Funds for bicycle and pedestrian projects.
 - Policy: Seek funding for needed improvements, and consider RIP funding and other state and federal grant sources.
- Objective: Provide a non-motorized transportation network that office a feasible alternative to vehicular travel.
 - Policy: Prioritize improvements providing access to schools, employment, and other critical services.
 - Policy: Prioritize projects that link to an existing facility or provide connectivity,
 - Policy: Fund planning activities in MCOG's Work Program to identify priority improvements for commute purposes, such as safe routes to schools plans.
 - Policy: Consider the addition/improvement of bicycle and pedestrian facilities when planning and implementing Local Street and road improvements.
- Objective: Encourage healthier lifestyles through increased walking and biking.
 - Policy: Coordinate with health organizations to promote alternative forms of transportation.
 - Policy: Support education programs to promote increased walking and biking.
 - Policy: Encourage development adjacent to existing pedestrian and bicycle systems.
- Objective: Improve property value and strengthen local economies through more accessible commercial and residential areas.
 - Encourage the addition of pedestrian and bicycle improvements in local business areas and existing residential areas.

Mendocino County Regional Bikeway Plan (2012)

The final Mendocino County Regional Bikeway Plan was adopted in 2012. The purpose of the Bikeway Plan is to compile all proposed bikeway improvements in Mendocino County into a single report, which helps meet the requirements of the California Bicycle Transportation Act. The Bikeway Plan also sets policies and guidelines for both the incorporated towns and unincorporated areas for the planned bicycle facilities in the County.

Vision Mendocino 2030 Blueprint Plan

Vision Mendocino 2030 documents how Mendocino County will accommodate expected growth and how they will do so in the most sustainable way. The Plan discusses County growth impacts to resource lands, city and community development, water districts, local food sources, and multi-modal transportation. The Blueprint Plan is unique because both cities and unincorporated communities were considered when shaping the goals and policies.

The guiding principles of Vision Mendocino 2030 are:

- Economic Vitality
 - Support resource-based industries based on the wealth of Mendocino's natural resources, such as agricultural lands, forests, and coastal lands, to create sustainable economic development. Resource-based industries that can be nourished in Mendocino include environmental clean-up, restoration, sustainable harvesting, value-added products, and eco-tourism. Ensure such industries occur in proximity to existing transportation corridors to prevent sprawl. Support efforts, such as expanding secondary education opportunities, to train County residents to occupy locally available jobs.
- Natural Resource Conservation
 - Preserve natural resources, including water, timber land, agricultural land, habitats, and open space. Limit new development to existing urbanized areas and the areas that marginally impact resources. Encourage all new development to incorporate water conservation practices and low impact development. Ensure adequate buffers between urban uses and natural habitats or agricultural land.
- Focused Development
 - Support infill development and direct new development primarily towards existing communities to utilize existing infrastructure systems. Encourage a mix of uses and development intensities that support pedestrian, bicycle, transit, and other non-motorized transportation modes.
- Transportation Choices
 - Promote reliable, efficient transportation alternatives to improve air quality, reduce greenhouse gas emissions, promote public health, and enhance quality of life. Encourage walking and biking as transportation options.
- Adequate Housing Supply
 - Expand housing options for people of all ages and incomes. Provide housing options proximate to public transit, jobs, food sources, services, parks, and other amenities.
- Community Character and Design
 - Enhance the unique characteristics of existing communities and quality of life. Foster a sense of place with a vibrant walking and biking environment. Ensure future development fits into Mendocino's rural, small town feeling through building design and placement.
- Local Food System
 - Provide local food sources in close proximity to housing and promote food processing industries to benefit the local economy. Support streamlined connections between local producers and local food consumers through farmers markets, delivery services, grocery stores, and local restaurants. Promote community gardens to provide access to affordable, fresh food sources, as well as create social gathering places.

Appendix C

Traffic Counts

ALL TRAFFIC DATA (916) 771-8700

(916) 771-8700 <u>orders@atdtraffic.com</u>

File Name : 14-7595-001 US 101-SR 175.ppd Date : 9/25/2014

	8	n
	¢	3
	ç	
1	S	5
	<	l
	I	I
	ż	
	2	2
(ċ	5
	ζ	2
	t	2
1	ċ	
	٩	n
1	-	5

			Utum Total	0	0	0	0	0	0	0	0	0	0	0		
			Total	264	273	294	262	1093	251	317	281	287	1136	2229		100.0%
			APP.TOTAL	0	0	0	0	0	0	0	0	0	0	0		0.0%
	Eastbound	p	JTURNS /	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
		RIGHT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%	
			THRU	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
			LEFT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
			APP.TOTAL	110	109	122	113	454	114	117	119	98	448	902		40.5%
US 101 Northboilind	pu	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%	
	Northbou	RIGHT	ø	-	13	9	28	9	7	12	9	31	59	6.5%	2.6%	
	200		THRU	102	108	109	107	426	108	110	107	92	417	843	93.5%	37.8%
			LEFT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
			APP.TOTAL	32	30	50	33	145	31	34	30	26	121	266		11.9%
	.0	pu	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
	SR 175	Westbou	RIGHT	23	23	42	25	113	23	28	20	20	91	204	76.7%	9.2%
			THRU	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
			LEFT	6	7	8	8	32	ø	9	10	9	30	62	23.3%	2.8%
			APP.TOTAL	122	134	122	116	494	106	166	132	163	567	1061		47.6%
		pu	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
	US 101	Southbou	RIGHT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
			THRU	106	118	66	95	418	92	145	118	145	500	918	86.5%	41.2%
			LEFT	16	16	23	21	76	14	21	4	18	67	143	13.5%	6.4%
			START TIME	16:00	16:15	16:30	16:45	Total	17:00	17:15	17:30	17:45	Total	Grand Total	Apprch %	Total %

ALL TRAFFIC DATA (916) 771-8700 orders@atdtraffic.com

File Name : 14-7595-001 US 101-SR 175.ppd Date : 9/25/2014

			I.	Ī		_	•	_	•	9		ç
1			Tota			251	317	281	287	1130		968.
Unshifted Count = All Vehicles			APP.TOTAL			0	0	0	0	0		000
		pu	UTURNS			0	0	0	0	0	0.0%	000 [.]
		Eastbou	RIGHT			0	0	0	0	0	0.0%	000 [.]
			THRU			0	0	0	0	0	0.0%	000
			LEFT			0	0	0	0	0	0.0%	000
			APP.TOTAL			114	117	119	98	448		.941
	1	pur	UTURNS			0	0	0	0	0	0.0%	000 [.]
	US 10	Northbo	RIGHT			9	7	12	9	31	6.9%	.646
			THRU			108	110	107	92	417	93.1%	.948
			LEFT			0	0	0	0	0	0.0%	000
			APP.TOTAL			31	34	30	26	121		068.
		pu	UTURNS			0	0	0	0	0	0.0%	000
	SR 175	Westbou	RIGHT			23	28	20	20	91	75.2%	.813
			THRU			0	0	0	0	0	0.0%	000 [.]
			LEFT			8	9	10	9	30	24.8%	.750
			APP.TOTAL			106	166	132	163	567		.854
		pur	UTURNS		at 17:00	0	0	0	0	0	0.0%	000
	US 101	Southbou	RIGHT	to 18:00	n Begins a	0	0	0	0	0	0.0%	000 [.]
			THRU	om 17:00	ntersection	92	145	118	145	500	88.2%	.862
			LEFT	alysis Fro	vr Entire Ir	14	21	14	18	67	11.8%	.798
	PM PEAK	HOUR	START TIME	Peak Hour An	Peak Hour Fo	17:00	17:15	17:30	17:45	Total Volume	% App Total	HH

ALL TRAFFIC DATA (916) 771-8700

(916) 771-8700 orders@atdtraffic.com

File Name : 14-7595-002 Old River Road-SR 175.ppd Date : 9/25/2014

SR 175

es
<u>0</u>
eh
2
₹
"
Ē
ō
ð
fte
, Pi
Ĩ
-

SR 175

Old River Road

	Uturn Total	0	0	0	0	0	0	0	0	0	0	0		
	Total	77	63	102	82	324	73	75	80	69	297	621		100.0%
	APP.TOTAL	25	12	28	27	92	18	33	20	23	94	186		30.0%
pu	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
Eastbou	RIGHT	0	7	7	3	7	-	-	7	1	ប	12	6.5%	1.9%
	THRU	25	10	26	24	85	17	32	18	22	89	174	93.5%	28.0%
	LEFT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
	APP.TOTAL	14	14	15	16	59	16	ი	22	12	59	118		19.0%
nd	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
Northbou	RIGHT	13	4	14	16	57	15	8	20	11	54	111	94.1%	17.9%
	THRU	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
	LEFT	-	0	-	0	2	~	-	2	٦	5	7	5.9%	1.1%
	APP.TOTAL	38	37	59	39	173	39	33	38	34	144	317		51.0%
pu	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
Westbou	RIGHT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
	THRU	23	30	48	26	127	30	24	30	17	101	228	71.9%	36.7%
	LEFT	15	7	1	13	46	თ	ი	œ	17	43	89	28.1%	14.3%
	APP.TOTAL	0	0	0	0	0	0	0	0	0	0	0		%0.0
pur	UTURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
Southbou	RIGHT	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
	THRU	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
	LEFT	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
	START TIME	16:00	16:15	16:30	16:45	Total	17:00	17:15	17:30	17:45	Total	Grand Total	Apprch %	Total %

ndocino County	Vehicles on Unshifted	thing on Bank 1	thing on Bank 2
Mendo	All Ve	Nothin	Nothin

ALL TRAFFIC DATA (916) 771-8700 orders@atdtraffic.com

File Name : 14-7595-002 Old River Road-SR 175.ppd Date : 9/25/2014

			tal	Ī		72	2	з	5	22		14
]			۲ر To			5	ø	7.	Ň	33		έο.
ted Count = All Vehicles			APP.TOTA			28	27	18	33	106		.803
	5	pu	UTURNS			0	0	0	0	0	0.0%	000
	SR 17	Eastbou	RIGHT			2	ო	-	-	7	6.6%	.583
			THRU			26	24	17	32	66	93.4%	.773
			LEFT			0	0	0	0	0	0.0%	000
			APP.TOTAL			15	16	16	6	56		.875
	Road	pu	UTURNS			0	0	0	0	0	0.0%	000
	Id River F	Northbou	RIGHT			14	16	15	80	53	94.6%	.828
	0		UNHT			0	0	0	0	0	0.0%	000 [.]
			LEFT			-	0	-	-	3	5.4%	.750
			APP.TOTAL			59	39	39	33	170		.720
Unshif	SR 175	pu	UTURNS			0	0	0	0	0	0.0%	000
		Westbou	RIGHT			0	0	0	0	0	0.0%	000
			THRU			48	26	30	24	128	75.3%	.667
			LEFT			1	13	6	റ	42	24.7%	.808
			APP.TOTAL			0	0	0	0	0		000
		pur	UTURNS		at 16:30	0	0	0	0	0	0.0%	000
		Southbou	RIGHT	to 17:30	n Begins	0	0	0	0	0	0.0%	000
			THRU	om 16:30	ntersectio	0	0	0	0	0	0.0%	000
			LEFT	alysis Fro	yr Entire Iı	0	0	0	0	0	0.0%	000
	PM PEAK	HOUR	START TIME	Peak Hour Ar	Peak Hour Fc	16:30	16:45	17:00	17:15	Total Volume	% App Total	PHF

ALL TRAFFIC DATA (916) 771-8700 orders@atdtraffic.com

> Mendocino County All Vehicles on Unshifted Nothing on Bank 1 Nothing on Bank 2

Unshifted Count = All Vehicles

File Name : 14-7595-003 US 101-Mountain House Road.ppd Date : 9/25/2014

	1.4.1 T -4.1	Utum I otal	0	0	0	0	0	0	0	0	0	0	0		
	Tatel	lotal	231	245	242	237	955	220	281	260	252	1013	1968		100.0%
se Road nd		APP.TOTAL	13	14	21	12	60	12	16	16	8	52	112		5.7%
		ULUKNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
ntain Hous		אופחו	7	2	ო	4	11	ო	ი	ო	0	6	20	17.9%	1.0%
Moui		IHKU	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
			7	12	18	œ	49	6	13	13	ø	43	92	82.1%	4.7%
		APP.101AL	105	107	113	113	438	108	114	116	92	430	868		44.1%
- ¹		UIURNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
US 10		RIGH	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
		IHKU	103	104	107	112	426	105	111	112	89	417	843	97.1%	42.8%
			7	ო	9	-	12	ო	ო	4	ო	13	25	2.9%	1.3%
		APP.IOTAL	0	0	0	0	0	0	0	0	0	0	0		%0.0
Ţ		U I UKINS	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
W/aethou		אופחו	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
		ואאט	0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
			0	0	0	0	0	0	0	0	0	0	0	0.0%	0.0%
		APP.TOTAL	113	124	108	112	457	100	151	128	152	531	988		50.2%
		UI UKNS	0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
US 10'		RIGH	13	17	14	16	60	12	15	12	23	62	122	12.3%	6.2%
		DAH I	100	107	94	96	397	88	136	116	129	469	866	87.7%	44.0%
			0	0	0	0	0	0	0	0	0	0	0	0.0%	%0.0
		STAKT TIME	16:00	16:15	16:30	16:45	Total	17:00	17:15	17:30	17:45	Total	Grand Total	Apprch %	Total %

ALL TRAFFIC DATA (916) 771-8700 orders@atdtraffic.com

File Name : 14-7595-003 US 101-Mountain House Road.ppd Date : 9/25/2014

			Total	Ī		220	281	260	252	1013		.901
			APP.TOTAL			12	16	16	8	52		.813
	se Road	p	UTURNS			0	0	0	0	0	0.0%	000 [.]
	ntain Hou	Eastbou	RIGHT			ო	ო	ო	0	6	17.3%	.750
	Moui		THRU			0	0	0	0	0	0.0%	000
			LEFT			6	13	13	8	43	82.7%	.827
			APP.TOTAL			108	114	116	92	430		.927
	-	pur	UTURNS			0	0	0	0	0	0.0%	000 [.]
	US 10	Northbou	RIGHT			0	0	0	0	0	0.0%	000
hicles			THRU			105	111	112	89	417	97.0%	.931
:= All Ve			LEFT			ო	ო	4	3	13	3.0%	.813
ted Count			APP.TOTAL			0	0	0	0	0		000 [.]
Unshift		pu	UTURNS			0	0	0	0	0	0.0%	000
		Westbou	RIGHT			0	0	0	0	0	0.0%	000 [.]
			THRU			0	0	0	0	0	0.0%	000 [.]
			LEFT			0	0	0	0	0	0.0%	000 [.]
			APP.TOTAL			100	151	128	152	531		.873
		pu	UTURNS		it 17:00	0	0	0	0	0	0.0%	000 [.]
	US 101	Southbou	RIGHT	io 18:00	1 Begins a	12	15	12	23	62	11.7%	.674
		-	THRU	om 17:00 t	ntersectior	88	136	116	129	469	88.3%	.862
			LEFT	alysis Fro	yr Entire Iı	0	0	0	0	0	0.0%	000 [.]
	PM PEAK	HOUR	START TIME	Peak Hour Ar	Peak Hour Fc	17:00	17:15	17:30	17:45	Total Volume	% App Total	HH

15-Minute Intersection Counts 4:00pm to 6:00pm

Int 1: Feliz Creek Rd & Mtn House Road

9/10/14 from 4:25 pm to 4:40 pm

	Northbound		S	outhbound			Eastbound		Westbound			
Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
1	8	3	5	10	5	2	1	0	1	1	1	
4	32	12	20	40	20	8	4	0	4	4	4	

Int 2: East Side 201 Rd/Old River Rd & Lakeport-Hopland 175 Road

9/10/14 from 4:55 pm to 5:10 pm

I	Northbound	1	S	outhbound			Eastbound		Westbound			
Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
0	3	29	1	24	0	1	0	0	20	0	1	
0	12	116	4	96	0	4	0	0	80	0	4	

Int 3: Hewlett Strurtevant Rd & 101

9/10/14 from 4:00 pm to 4:15 pm

1	Northbound		S	outhbound			Eastbound		N	Westbound	
Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
0	120	0	0	130	0	0	0	2	0	0	0
0	480	0	0	520	0	0	0	8	0	0	0

City: Mendocino County Project #: 14-7596-001

Volumes fo	or: Thursday, Se	otember 2	5, 2014	Dood and S	City:	Mendocino	County	Project #:	14-7596-001	
Stort	US 101 Delwe		ain House i	Totale	<u>South</u>	ound	Hour	Totale	Combined	Totals
Timo	Morning A	ftornoon	Morning	Aftornoon	Morning	Affornoon	Morning	Aftornoon	Morning	Aftornov
12:00	25	121	worning	Allemoon	15	134	worning	Alternoon	worning 7	
12.00	20	145			15	134				
12:15	19	115			11	148				
12:30	18	130			13	124				
12:45	15	139	77	505	9	133	48	539	125	104
1:00	7	125			2	145				
1:15	18	143			13	125				
1:30	18	132			6	136				
1.45	9	108	52	508	8	141	29	547	81	105
2.00	10	141			14	127				
2.00	20	134			4	138				
2:10	20	117			12	120				
2.30	0	100	40	500	15	120	40	505	00	100
2:45	1	168	43	560	15	150	46	535	89	105
3:00	9	149			17	141				
3:15	19	127			14	118				
3:30	9	116			9	137				
3:45	27	126	64	518	23	144	63	540	127	10
4:00	11	114			21	114				
4.15	13	116			33	122				
4.30	21	122			25	112				
4.30	21	122	61	474	20	101	100	440	160	0
4.45	10	122	01	4/4	29	101	100	449	109	9.
5:00	24	112			32	108				
5:15	28	125			64	145				
5:30	30	120			72	131				
5:45	43	100	125	457	54	148	222	532	347	9
6:00	33	113			55	102				
6.15	53	93			79	112				
6:30	66	82			83	82				
6:45	00	02	224	370	94	71	201	267	525	7
7.00	02	02	234	570	74	07	301	307	555	1.
7:00	80	90			71	87				
7:15	97	((/1	97				
7:30	107	80			66	73				
7:45	95	73	379	320	85	68	293	325	672	6
8:00	107	72			84	66				
8:15	93	53			88	56				
8.30	105	62			115	32				
8:45	100	54	405	241	85	52	372	206	777	1
0.40	01	27	400	271	110	42	572	200		-
9.00	91	57			112	42				
9:15	73	54			110	45				
9:30	143	35			122	44	0			
9:45	105	33	412	159	109	38	453	169	865	3
10:00	105	48			127	18				
10:15	121	49			126	25				
10:30	109	31			112	25				
10.45	122	23	457	151	116	22	481	90	938	2
11.00	113	11	-07	101	102	10		00	000	2
11.00	110	41			120	19				
11.15	119	20			117	8				
11:30	111	18			112	18				
11:45	99	18	442	103	157	16	509	61	951	1
Total	2751	4366	2751	4366	2925	4360	2925	4360	5676	87
mbined	7447		74	47	700	05	70	05	1440	2
Total	7117		71	17	/28	55	72	00	1440	2
M Peak	9.30 AM				11 [.] 45 AM					
Vol	0.00 AW				562					
	4/4				003					
Р.П.Г.	0.829				0.896	10 1				
M Peak		2:15 PM				12:15 PM				
Vol.		568				550				
P.H.F.		0.874				0.929				
centage	38.7%	61.3%			40.2%	59.8%				
	J / J					/ 0				
City: Mendocino County Project #: 14-7596-001

Volumes for	or: Friday, Septe	mber 26, 2	2014		City:	Mendocino	County	Project #:	14-7596-00)1
Location:	US 101 betwe	een Mount	tain House F	Road and SF	<u>R 175</u>			-	<u> </u>	
Start	Northbo	ound	Hour	lotals	South	bound	Hour	Totals	Combine	ed Totals
Time	Morning A	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afterno
12:00	22	146			11	163				
12:15	14	162			9	129				
12:30	12	159			8	180				
12:45	24	164	72	631	11	134	39	606	111	12
1:00	19	135			19	153				
1:15	25	163			7	162				
1.30	16	167			14	145				
1:45	17	149	77	614	8	154	48	614	125	13
2:00	11	140		014	10	146	40	014	120	12
2.00	10	149			10	140				
2:15	10	174			12	178				
2:30	11	154			9	131				
2:45	12	168	44	645	16	156	47	611	91	12
3:00	16	148			8	154				
3:15	15	195			19	141				
3:30	14	165			23	191				
3.42	8	159	53	667	18	165	68	651	121	1:
4.00	17	163	00	001	20	181	00	001		
4:15	10	167			20	101				
4.15	19	107			27	190				
4:30	26	174			23	140				
4:45	21	179	83	683	37	157	107	668	190	1;
5:00	31	163			42	177				
5:15	22	155			63	170				
5:30	28	149			73	181				
5.45	42	143	123	610	57	153	235	681	358	1
6:00	63	135		0.0	58	148				
6:15	75	1/1			80	123				
0.15	75	141			30	123				
6:30	56	159			74	123	~~~			
6:45	87	162	283	597	75	102	287	496	570	10
7:00	87	123			67	110				
7:15	108	141			93	79				
7:30	111	89			79	76				
7:45	92	98	398	451	78	62	317	327	715	-
8.00	93	64			75	61				
8.15	93	83			83	51				
0.10	03	04			05	70				
0.30	93	94	007	050	90	10	050	000	740	
8:45	108	112	387	353	100	47	353	229	740	;
9:00	70	86			111	37				
9:15	107	121			101	46				
9:30	123	79			101	56	0			
9:45	109	82	409	368	140	33	453	172	862	4
10:00	115	79		-	101	31				
10.15	141	61			120	34				
10.30	130	66			120	26				
10:30	100	60	510	274	107	20	101	121	1000	
10.40	100	00	519	214	123	40	401	151	1000	
11:00	140	66			121	24				
11:15	135	45			135	26				
11:30	155	40			151	18				
11:45	125	21	555	172	112	13	519	81	1074	
Total	3003	6065	3003	6065	2954	5267	2954	5267	5957	11
mbined				-				~ /		
Total	9068	5	900	58	82	21	82	21	172	289
M Dook	11.45 AM				11.45					
vi redk	11.45 AIVI				11.45 AIVI					
Vol.	592				584					
P.H.F.	0.914				0.811					
M Peak		4:00 PM				3:30 PM				
Vol.		683				727				
P.H.F.		0.974				0.952				
entade	33 1%	66 9%			35 0%	64 1%				
Sinuge	55.170	00.070			00.070	J-1/0				

City: Mendocino County Project #: 14-7596-001

Location:	US 101 betw	ween Mount	ain House F	Road and SF	R 175		-	-		
Start	Northb	bound	Hour	Totals	South	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	19	121			14	124				
12:15	22	121			10	127				
12:30	34	135			19	128				
12:45	36	122	111	499	10	130	53	509	164	1008
1.00	22	111			13	127		000		
1.15	26	131			17	131				
1:30	17	137			16	131				
1:45	0	107	74	470	10	137	55	526	120	1005
2:00	16	100	74	475	5	142	55	520	123	1005
2.00	10	123			0	142				
2.15	17	100			1	130				
2:30	10	134	- 4	540	14	132		505	0.5	4004
2:45	11	134	54	549	4	123	31	535	85	1084
3:00	17	137			7	145				
3:15	12	118			11	99				
3:30	8	132			9	127				
3:45	13	140	50	527	13	122	40	493	90	1020
4:00	12	127			11	113				
4:15	12	114			18	131				
4:30	10	109			19	114				
4:45	17	133	51	483	16	120	64	478	115	961
5:00	11	119			25	116				
5:15	25	106			30	111				
5:30	26	108			33	127				
5:45	15	84	77	417	23	106	111	460	188	877
6:00	30	73		417	20	75		400	100	0//
6:15	30	75			46	75				
0.15	32	80 00			40	70				
0:30	23	92	405	004	39	95	404	200	000	000
6:45	50	119	135	364	48	82	164	328	299	692
7:00	40	104			54	70				
7:15	60	103			59	59				
7:30	49	88			53	76				
7:45	70	80	219	375	50	65	216	270	435	645
8:00	77	81			76	64				
8:15	66	95			77	45				
8:30	88	79			79	43				
8:45	76	102	307	357	103	54	335	206	642	563
9:00	83	95			94	45				
9:15	84	66			107	51				
9:30	90	50			123	38	0			
9.45	107	58	364	269	127	43	451	177	815	446
10.00	97	47		200	116	47			0.0	
10:00	96	48			110	30				
10:10	124	40			124	41				
10.30	124	40	407	170	124	41	400	161	007	224
11.40	9U 07	55	407	170	139	40	490	101	097	551
11:00	0/	52			112	23				
11:15	101	34			149	26				
11:30	125	41			148	28				
11:45	128	28	441	155	125	23	534	100	975	255
Total	2290	4644	2290	4644	2544	4243	2544	4243	4834	8887
Combined	693	84	69	34	67	87	67	87	137	721
Total	000			~ '	570		570		101	
AM Peak	11:45 AM				10:45 AM					
Vol.	505				548					
P.H.F.	0.935				0.919					
PM Peak		2:15 PM				1:45 PM				
Vol.		563				549				
P.H.F		0.886				0.967				
		2.200				0.001				
ercentage	33.0%	67 0%			37 5%	62.5%				
	00.070	01.070			51.570	02.070				

Volumes for: Saturday, September 27, 2014

inty Project #: 14-7596-001

Location:	US 101 betw	een Mount	ain House F	Road and SF	R 175					
Start	Northbo	ound	Hour	Totals	South	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	25	141			9	153				
12:15	26	114			10	147				
12:30	24	123			18	162				
12:45	14	89	89	467	16	151	53	613	142	1080
1:00	20	106			27	163				
1.15	12	113			7	168				
1:30	20	98			23	173				
1:45	15	113	67	430	13	181	70	685	137	1115
2:00	16	116	07	400	3	172	70	000	107	1115
2:00	10	124			5	172				
2.10	12	124			5	155				
2:30	11	123	40	404	9	154	07	0.40		
2:45	9	118	48	481	10	162	27	643	75	1124
3:00	6	118			6	163				
3:15	8	132			4	188				
3:30	5	133			10	162				
3:45	9	129	28	512	9	173	29	686	57	1198
4:00	7	132			6	156				
4:15	9	108			11	167				
4:30	3	110			15	165				
4:45	3	130	22	480	6	141	38	629	60	1109
5:00	16	112			14	163				
5.15	7	134			7	153				
5:30	15	135			11	154				
5:45	10	138	10	510	20	140	52	610	101	1139
6:00	11	104	45	515	16	140	52	019	101	1150
6:15	20	104			10	100				
0.15	20	114			17	124				
6:30	20	108	- 4	400	33	126	05	540	400	0.40
6:45	17	110	74	436	29	122	95	510	169	946
7:00	24	139			24	107				
7:15	28	102			47	104				
7:30	37	112			39	94				
7:45	23	69	112	422	44	87	154	392	266	814
8:00	40	96			68	76				
8:15	38	97			49	81				
8:30	43	77			46	61				
8:45	68	68	189	338	73	56	236	274	425	612
9:00	69	72			89	63				
9.15	52	66			90	52				
9:30	67	46			81	34	0			
0:45	02	56	280	240	103	24	363	173	643	413
10:00	77	33	200	240	120	27	505	175	045	410
10.00	70	55			139	32				
10:15	78	52			148	20				
10:30	67	29			138	13				
10:45	79	30	301	144	128	25	553	90	854	234
11:00	77	19			122	14				
11:15	101	34			141	16				
11:30	112	24			140	15				
11:45	101	31	391	108	160	21	563	66	954	174
Total	1650	4577	1650	4577	2233	5380	2233	5380	3883	9957
ombined		-			70	10	70	40	4.00	
Total	622	1	622	<u> </u>	76	15	76	13	138	940
M Peak	11:45 AM				11:45 AM					
Vol	A70				622					
	0 0 0 0				022					
M Dock	0.049	2.15 DM			0.900					
		3. 13 PIVI				1.15 PIVI				
VOI.		526				694				
P.H.F.		0.983				0.959				
centage	26.5%	73.5%			29.3%	70.7%				

Volumes for: Sunday, September 28, 2014

City: Mendocino County

City: Mendocino County	Project #:	14-7596-002

Location:	SR 175 east	of railroad	tracks (eas	t of US 101)						
Start	Eastbo	ound	Hour	Totals	West	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	1	23			1	23				
12:15	2	22			4	19				
12:30	1	19			2	14				
12:45	0	25	4	89	0	25	7	81	11	170
1:00	2	12			8	18		-		
1.15	2	13			0	25				
1:30	1	20			1	21				
1:45	0	23	5	77	0	21	Q	85	14	162
2:00	1	17	5		1	27	5	00	14	102
2.00	1	24			2	27				
2.10	0	24			10	20				
2:30	1	15			12	23				
2:45	1	21	3	()	1	27	17	97	20	1/4
3:00	0	16			1	20				
3:15	1	22			1	18				
3:30	1	23			1	48				
3:45	3	40	5	101	0	41	3	127	8	228
4:00	2	20			3	24				
4:15	0	12			2	30				
4.30	3	34			5	49				
4:45	10	20	15	86	1	26	11	129	26	215
5:00	8	19	10	00	4	31		120	20	210
5:15	15	36			о О	25				
5.15	10	21			5	20				
5:30	12	21	0.4	00	5	31	00	405	00	000
5:45	29	22	64	98	8	18	26	105	90	203
6:00	11	26			11	16				
6:15	20	17			7	16				
6:30	14	10			10	13				
6:45	25	20	70	73	21	13	49	58	119	131
7:00	11	19			6	17				
7:15	19	17			16	6				
7:30	18	11			31	9				
7:45	19	7	67	54	20	15	73	47	140	101
8:00	26	6			19	4				
8:15	15	10			15	6				
8:30	25	13			15	13				
8:45	24	14	90	43	12	9	61	32	151	75
0.40	10	9	00	40	17	5	01	02	101	10
9.00	19	0			17	5				
9.15	12	10			13	10				
9.30	17	12	CO	20	21	10	75	00	405	<u></u>
9:45	12	10	60	39	24	9	75	29	135	68
10:00	19	9			21	5				
10:15	9	9			15	9				
10:30	21	7			15	3				
10:45	23	5	72	30	23	2	74	19	146	49
11:00	18	5			36	3				
11:15	15	1			11	0				
11:30	15	4			16	6				
11:45	13	5	61	15	19	4	82	13	143	28
Total	516	782	516	782	487	822	487	822	1003	1604
Combined		_								
Total	129	8	12	98	130	99	13	09	26	07
AM Peak	8.00 014				10·15 AM					
Vol					20.10 AW					
	90				0.010					
Р.П.Г.	0.805	4.00 011			0.618	0.45 51				
PINI Peak		4:30 PM				3:45 PM				
Vol.		109				144				
P.H.F.		0.757				0.735				
ercentage	39.8%	60.2%			37.2%	62.8%				

Volumes for: Thursday, September 25, 2014 Location: SR 175 east of railroad tracks (east of US 10

Location:	SR 175 east of	of railroad	tracks (eas	t of US 101)						
Start	Eastbo	und	Hour	Totals	Westb	ound	Hour	Totals	Combine	d Totals
Time	Morning A	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	3	29			10	40				
12:15	3	21			5	25				
12:30	0	22			6	33				
12:45	3	22	9	94	1	28	22	126	31	220
1.00	2	20	-	•	3	35				
1.15	- 1	26			1	35				
1:30	0	10			2	26				
1:45	1	20	1	95	4	20	10	116	14	201
1.40	1	20	4	00	4	20	10	110	14	201
2:00	1	29			0	29				
2:15	0	29			2	23				
2:30	2	37			10	36				
2:45	1	27	4	122	0	24	12	112	16	234
3:00	1	23			2	21				
3:15	0	30			0	29				
3:30	0	46			1	31				
3:45	1	30	2	129	0	34	3	115	5	244
4:00	2	25			2	31				
4:15	0	32			3	30				
4.30	8	34			3	38				
4:45	6	30	16	121	2	32	10	131	26	252
5:00	6	38	10		6	23	10	101	20	202
5:15	18	28			7	20				
5.15	10	20			1	22				
5:30	14	20	70	445	9	24		00	100	000
5:45	35	29	73	115	11	24	33	93	106	208
6:00	21	27			9	38				
6:15	16	21			6	17				
6:30	14	27			12	17				
6:45	29	22	80	97	18	6	45	78	125	175
7:00	18	20			9	11				
7:15	16	18			17	6				
7:30	16	18			34	14				
7:45	19	9	69	65	23	10	83	41	152	106
8:00	23	13			16	17				
8:15	17	10			20	23				
8:30	14	18			18	21				
8:45	24	11	78	52	18	13	72	74	150	126
0.40	18	0	10	02	10	0	12	14	100	120
9.00	10	5			24	3				
9.15	30	10			24	7				
9.30	10	12	75	0.4	17	1	00	07	457	04
9:45	11	1	75	34	24	4	82	27	157	61
10:00	15	18			17	12				
10:15	16	6			12	5				
10:30	18	8			12	8				
10:45	15	11	64	43	23	17	64	42	128	85
11:00	27	4			10	7				
11:15	19	5			21	8				
11:30	27	4			21	6				
11:45	18	5	91	18	25	8	77	29	168	47
Total	565	975	565	975	513	984	513	984	1078	1959
Combined	4540		4 -	40		-		~ 7		-
Total	1540		15	40	149	1	14	97	303	1
AM Peak	11:30 AM				11:45 AM					
Vol	95				123					
	0 Q 1 Q				0 760					
DM Dook	0.019	1.15 DM			0.709	3.45 DM				
		10 FIVI				100 L 10				
		134				133				
Р.П.Г.		0.882				0.875				
Percentage	36.7%	63.3%			34.3%	65.7%				

Volumes for: Friday, September 26, 2014

City: Mendocino County Project

Project #: 14-7596-002

	City: Mendocino County	Project #:	14-7596-002
st of US 101)			

Volumes fo	or: Saturday, Se	ptember 2	7, 2014	t of U.C. 101)	City: Mendocino County			Project #:	14-7596-002	
Start	Easthou	und	Hour	Totals	Westh	hund	Hour	Totals	Combined	Totals
Time	Morning A	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning A	fternoon
12:00	4	29	·······································	,	10	24	·······································	7.00000	l litering /	
12:15	4	19			4	18				
12:30	3	23			7	18				
12:45	3	25	14	96	4	24	25	84	39	180
1:00	2	20	14	00	5	19	20	64	00	100
1:15	1	24			6	10				
1.10	1	24			3	28				
1:45	2	20	6	101	2	20	16	00	22	101
2:00	2	10	0	101	2	10	10	50	22	191
2:00	2	22			5	19				
2.15	2	22			10	20				
2.30	1	20	C	96	10	17	10	00	22	170
2:45	1	20	0	80	1	20	10	89	22	1/5
3:00	1	21			3	17				
3:15	0	24			6	17				
3:30	0	41			0	12				
3:45	0	32	1	124	4	22	13	68	14	192
4:00	0	40			0	28				
4:15	1	26			0	20				
4:30	2	27			1	23				
4:45	3	19	6	112	1	22	2	93	8	205
5:00	0	19			3	12				
5:15	2	18			4	25				
5:30	7	13			0	13				
5:45	14	28	23	78	3	15	10	65	33	143
6:00	7	10			6	21				
6:15	6	18			8	19				
6:30	12	16			4	16				
6:45	10	27	35	71	6	16	24	72	59	143
7:00	3	14			6	15				
7:15	7	14			10	12				
7:30	11	12			10	10				
7:45	10	16	31	56		7	34	44	65	100
8:00	6	10	01	00	13	10	01			100
8:15	11	20			8	7				
8:30	۰. م	13			14					
8:45	16	20	12	70	0	11	11	34	86	10/
0.40	10	20	42	70	12	12		54	00	104
9.00	13	10			10	12				
9.15	10	11			10	0				
9.30	10	11	50	45	10	14	61	47	111	01
9.45	15	17	53	45	19	13	01	47	114	92
10:00	24	9			18	11				
10:15	19	9			13	10				
10:30	21	5			24	28				
10:45	17	6	81	29	19	23	74	72	155	101
11:00	15	7			15	10				
11:15	24	9			22	14				
11:30	19	5			15	27				
11:45	34	2	92	23	18	12	70	63	162	86
Total	390	891	390	891	389	821	389	821	779	1712
ombined	1281		12	81	121	0	10	10	2401	
Total	1201		12		121	•	12		2-131	
AM Peak	11:15 AM				10:30 AM					
Vol.	106				80					
P.H.F.	0.779				0.833					
PM Peak		3:30 PM				1:30 PM				
Vol.		139				99				
P.H.F.		0.848				0.884				
rcentage	30.4%	69.6%			32.1%	67.9%				

Volumes for	: Sunday, Se	eptember 28	, 2014		City:	Mendocino	County	Project #:	14-7596-00)2	
Location:	SR 1/5 eas	st of railroad	tracks (eas	t of US 101)							
Start	East	bound	Hour	Iotais	vvesti	bound	Hour	lotais	Combine	ed lotals	
Time	Morning	Atternoon	Morning	Atternoon	Morning	Atternoon	Morning	Atternoon	Morning	Atternoon	
12:00	8	23			19	24					
12:15	3	21			1/	26					
12:30	5	18			9	18					
12:45	4	12	20	74	6	18	51	86	71	160	
1:00	3	22			19	19					
1:15	2	22			6	28					
1:30	8	23			11	26					
1:45	3	23	16	90	5	24	41	97	57	187	
2:00	3	23			4	35					
2:15	1	14			4	27					
2:30	0	8			2	27					
2:45	1	25	5	70	2	20	12	109	17	179	
3:00	0	21			2	19					
3:15	2	16			1	27					
3:30	0	18			1	22					
3:45	0	24	2	79	0	25	4	93	6	172	
4:00	0	22			1	24					
4:15	2	16			6	27					
4:30	1	16			3	22					
4:45	2	25	5	79	1	21	11	94	16	173	
5:00	0	13			4	13					
5:15	0	7			0	15					
5:30	10	16			4	26					
5:45	11	18	21	54	2	12	10	66	31	120	
6:00	5	9			2	23					
6:15	9	16			2	19					
6:30	7	16			2	15					
6:45	14	10	35	51	6	21	12	78	47	129	
7:00	9	11		_	4	18					
7:15	18	12			6	12					
7:30	13	15			11	12					
7:45	7	13	47	51	3	11	24	53	71	104	
8.00	11	5		• ·	13	9					
8.15	5	10			4	10					
8:30	13	11			13	4					
8:45	20	11	49	37	10	7	40	30	89	67	
9.00	_0 _0	7	10	01	10	, q	10	00	00	01	
9:15	15	7			12	5					
9:30	10	,			8	5					
9:45	10	7	51	27	16	5	46	25	97	52	
10:00	21	, 6	51	21	20	6	-0	20	57	52	
10:00	21	0			29	0					
10.13	14	4			20	4					
10:30	10	4	65	16	20	3	90	16	151	20	
11.40	19	2	05	10	20	3 F	00	10	101	52	
11.00	10	3			10	5					
11.10	10	7			19	0					
11.30	23	1	77	10	23	3	74	14	151	22	
Total	202	2 647	202	19 647	∠ I ⊿11	761	/4 //11	761	101	1408	

62.2%	

1040

1040

1:15 PM

91

0.989

11:30 AM

89 0.967

37.8%

Combined

AM Peak

Total

Vol. P.H.F. PM Peak

Vol.

P.H.F.

Percentage

35.1% 64.9%

1:15 PM 113 0.807

1172

11:30 AM

94 0.904

1172

2212

Appendix D

Speed Surveys

From: Solar Living Driveway Street: US 101 (Northbound) To: Mountain House Rd **Street Conditions Observations and Evaluation** Posted Limit: 35 Vehicles Sampled: 51 Width: 35 feet 85th Percentile Speed: 48 mph 2 Mean (50th Percentile) Speed: 43 mph Lanes: Configuration: Undivided 38 to Pace: 48 mph

Percent in Pace: 68.6%

Parking:NoneBike Facility:NoneSidewalks:NoneCharacter:RuralTerrain:Flat

Street: US 101 (Southbound) *From:* Solar Living Driveway To: Mountain House Rd **Street Conditions Observations and Evaluation** Posted Limit: 35 Vehicles Sampled: 50 Width: 35 feet 85th Percentile Speed: 52 mph 2 Mean (50th Percentile) Speed: 43 mph Lanes: Configuration: Undivided 36 to Pace: 46 mph Percent in Pace: 64.0% Parking: None

Bike Facility:

Sidewalks:

Character:

None

None

Rural

From: Mountain House Rd

To: SR 175

Street Conditions Observations and Evaluation Posted Limit: 35 Vehicles Sampled: 50 Width: 64 feet 85th Percentile Speed: 32 mph 2 Mean (50th Percentile) Speed: 25 mph Lanes: Configuration: 2-way LT lane Pace: 20 to 30 mph Percent in Pace: 58.0% Parking: None Bike Facility: None Sidewalks: **Both Sides** Character: Rural Terrain: Flat

Street: US 101 (Northbound)

w-trans

Street: US 101 (Southbound) From: Mountain House Rd To: SR 175 **Street Conditions Observations and Evaluation** Posted Limit: 35 Vehicles Sampled: 52 Width: 64 feet 85th Percentile Speed: 40 mph 2 Mean (50th Percentile) Speed: 34 mph Lanes: Configuration: 2-way LT lane Pace: 27 37 mph to Percent in Pace: 63.5% Parking: None Bike Facility: None Sidewalks: **Both Sides** Character: Rural Terrain: Flat

Street: US 10	1 (Northbound)	<i>From:</i> <u>SR 175</u> <i>To:</i>	Center Drive
S	treet Conditions	Observations and Ev	aluation
Posted Limit:	35	Vehicles Sampled:	55
Width:	38 feet	85th Percentile Speed:	31 mph
Lanes:	2	Mean (50th Percentile) Speed:	26 mph
Configuration:	2-way LT lane	Pace: 23 to	33 mph
Parking:	Both Sides	Percent in Pace:	85.5%
Bike Facility:	None		
Sidewalks:	Both Sides		
Character:	Rural		
Terrain:	Flat		

Street: US 107	1 (Southbound)	From: SR 175	То:	Center Drive
S	treet Conditions	Observ	ations and Eva	aluation
Posted Limit:	35	Ve	hicles Sampled:	52
Width:	38 feet	85th Pe	ercentile Speed:	27 mph
Lanes:	2	Mean (50th Per	centile) Speed:	24 mph
Configuration:	2-way LT lane	Pace:	17 to	27 mph
Parking:	Both Sides	F	Percent in Pace:	90.4%
Bike Facility:	None			
Sidewalks:	Both Sides			
Character:	Rural			
Terrain:	Flat			

Street: US 101 (Northbound)		From: Center Drive	То:	First Street		
S	treet Conditions	Observations and Evaluation				
Posted Limit:	35	Vehic	les Sampled:	53		
Width:	65 feet	85th Perc	entile Speed:	39 mph		
Lanes:	2	Mean (50th Perce	entile) Speed:	33 mph		
Configuration:	2-way LT lane	Pace:	29 to	39 mph		
Parking:	Both Sides	Per	cent in Pace:	75.5%		
Bike Facility:	None					
Sidewalks:	Both Sides					
Character:	Rural					
Terrain:	Flat					

Street: US 101 (Southbound)		From:	Center Drive		То:	First Street
S	treet Conditions		Observ	vations ar	nd Eva	luation
Posted Limit:	35		Ve	ehicles San	npled:	53
Width:	65 feet		85th P	Percentile S	peed:	32 mph
Lanes:	2		Mean (50th Pe	ercentile) S	peed:	28 mph
Configuration:	2-way LT lane		Pace:	24	to	34 mph
Parking:	Both Sides			Percent in	Pace:	77.4%
Bike Facility:	None					
Sidewalks:	Both Sides					
Character:	Rural					
Terrain:	Flat					

Street: SR 175 (Eastbound)		From: Howe	II Street	То:	McDowell Street
S	treet Conditions		Observa	tions and Eva	aluation
Posted Limit:	35		Vehi	cles Sampled:	50
Width:	26 feet		85th Per	centile Speed:	37 mph
Lanes:	2	Mea	n (50th Perc	entile) Speed:	29 mph
Configuration:	Undivided		Pace:	25 to	35 mph
Parking:	None		Pe	ercent in Pace:	56.0%
Bike Facility:	None				
Sidewalks:	None				
Character:	Rural				
Terrain:	Flat				

Street: SR 175 (Westbound)		From: Howell Stree	et	To:	McDowell Street
S	treet Conditions	Obs	ervations a	nd Eva	aluation
Posted Limit:	35		Vehicles Sa	mpled:	50
Width:	26 feet	85t	h Percentile S	Speed:	36 mph
Lanes:	2	Mean (50th	Percentile) S	Speed:	30 mph
Configuration:	Undivided	Pac	e: 26	to	36 mph
Parking:	None		Percent in	Pace:	76.0%
Bike Facility:	None				
Sidewalks:	None				
Character:	Rural				
Terrain:	Flat				

Appendix E

Collision Rates

Intersec	ction Collision R	ate Calculaions	;				
Hopla	nd Main St Corrid	or EFS					
Intersection # 3:	US 101 & Mountair	House Rd					
Date of Count:	Thursday, Septemb	er 25, 2014					
Number of Collisions: Number of Injuries: Number of Fatalities: ADT:	1 0 0 10100						
Start Date: End Date: Number of Years:	October 1, 2007 September 30, 201 5	2					
Intersection Type: Control Type: Area:	Tee Stop & Yield Contro Rural	bls					
collision rate =	Numbo ADT x 365 D	er of Collisions x 1 I ays per Year x Nun	Million ber of Years				
collision rate =	1	x 1,000	0,000				
	10,100 x	365	x 5				
	Collision Rate	Fatality Rate	Injury Rate				
Study Intersection	0.05 c/mve	0.0%	0.0%				
Statewide Average"	0.16 C/mve	1.7%	39.2%				
Intersection # 4:	Feliz Creek Rd & M	ountain House Rd					
Date of Count:	Wednesday, Septe	mber 10. 2014					
Number of Collicions:	o veunesuay, Septe	10, 2014					
Number of Considers: Number of Injuries:	0						
Number of Fatalities:	0 1500						
Start Date: End Date: End Date: Number of Years:	October 1, 2007 September 30, 201 5	2					
Intersection Type: Control Type: Area:	Four-Legged Stop & Yield Contro Rural	bls					
collision rate =	Numbe	er of Collisions x 1 I	Million				
	AD1 X 000 D						
collision rate =	0 1,500 x	x 1,000 365	x 5				
Otorito Internetica	Collision Rate	Fatality Rate	Injury Rate				
Statewide Average*	0.23 c/mve	2.0%	40.4%				
ADT = average daily total v c/mve = collisions per millio * 2010 Collision Data on Ca	ehicles entering inter n vehicles entering ir alifornia State Highwa	section itersection ays, Caltrans					

Intersec	ction Collision R	ate Calculaions	3	
Hopla	nd Main St Corrid	or EFS	-	
Intersection # 5:	SR 175 & Old Rive	Rd		
Date of Count:	Thursday, Septemb	oer 25, 2014		
	2			
Number of Collisions: Number of Injuries:	2			
Number of Fatalities:	0			
ADT: Start Date:	3300 October 1, 2007			
End Date:	September 30, 201	2		
Number of Years:	5			
Intersection Type:	Тее			
Control Type:	Stop & Yield Contro	bls		
	Kurai			
collision rate =	Numbe	er of Collisions x 1 l	Villion	
	ABT X 303 B			
collision rate =	2 3 300 x	x 1,000	0,000 x 5	
	0,000 /		~ 0	
	Collision Rate	Fatality Rate	Injury Rate	
Study Intersection	0.33 c/mve	0.0%	50.0%	
Statewide Average*	0.16 c/mve	1.7%	39.2%	
		Line date of 475 Dat		
Intersection # 6:	SR 175 & Lakepont	-Hopiano 175 Ru		
Date of Count.	weanesday, Septe	inber 10, 2014		
Number of Collisions:	0			
Number of Injuries:	0			
Number of Fatalities:	0 3200			
Start Date:	October 1, 2007			
End Date:	September 30, 201	2		
Number of Years:	J			
Intersection Type:	Four-Legged			
Control Type: Area:	Rural	19		
	k I I.	or of Colliciana v 1	Aillion	
collision rate =	ADT x 365 D	ays per Year x Nun	hber of Years	
	0	x 1.000	0.000	
collision rate =	3,200 x	365	x 5	
.	Collision Rate	Fatality Rate	Injury Rate	
Study Intersection Statewide Average*	0.00 c/mve 0.23 c/mve	0.0%	<u>0.0%</u> 40.4%	
ADT = average daily total v	ehicles entering inter	section		
c/mve = collisions per millio	n vehicles entering in	itersection		
* 2010 Collision Data on Ca	alitornia State Highwa	ays, Caltrans		

SEGMENT COLLISION RATE CALCULATIONS						
Honia	nd Main S	St Corridor EES	6			
Поріа			•			
1	110 404		DM 44 00			
Location	US 101	from PM 10.24 to	PM 11.60			
Date of Count	Friday, S	September 26, 20	14			
ADT	: 14,200					
Number of Collisions	35					
Number of Injuries	· 12					
Number of Estalities						
Number of Latanties	. U Ostabar	1 2007				
Start Date	October	1, 2007				
End Date	Septem	ber 30, 2012				
Number of Years	5					
Highway Type	Convent	tional 2 lanes or le	ess			
Area	: Rural					
Design Speed	≤55					
Terrain	Flat					
Segment Length	11	miles				
	North/C	nuth				
Direction	. inortin/50	Jutil				
N	umber of C	ollisions x 1 Millio	n			
ADT x 365 Days p	er Year x S	Segment Length x	Number of Years			
35	х	1,000,000				
14.200 x	365	x 1.4	x 5			
,						
Colli	sion Rate	Fatality Rate	Injury Rate			
Study Segment 0.96		0.0%	3/ 3%			
Study Segment 0.90	C/IIIVIII	0.078	40.40/			
Statewide Averade" 0.84	c/mvm	2.4%	40.1%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil	es					
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State	es Highways	, Caltrans				
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State	es Highways	, Caltrans from PM 0.69 to ²	1.16			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State	es Highways : SR 175	, Caltrans from PM 0.69 to ²	1.16			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location	es Highways SR 175 Friday, S	, Caltrans from PM 0.69 to ² September 26, 20	1.16			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT	es Highways SR 175 Friday, S 4,900	, Caltrans from PM 0.69 to ² September 26, 20	1.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT	es Highways SR 175 Friday, S 4,900	, Caltrans from PM 0.69 to 7 September 26, 20	I.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT	es Highways SR 175 Friday, S 4,900	, Caltrans from PM 0.69 to ² September 26, 20	1.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT	es Highways SR 175 Friday, S 4,900	, Caltrans from PM 0.69 to ² September 26, 20	l.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries	es Highways : SR 175 : Friday, 5 : 4,900 : 3 : 2	, Caltrans from PM 0.69 to ⁻ September 26, 20	l.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities	es Highways SR 175 : Friday, S : 4,900 : 3 : 2 : 0	, Caltrans from PM 0.69 to 7 September 26, 20	1.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October	, Caltrans from PM 0.69 to 7 September 26, 20	1.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Start Date End Date	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml	, Caltrans from PM 0.69 to ² September 26, 20 1, 2007 ber 30, 2012	l.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years	es Highways SR 175 Friday, S 4,900 : 3 : 2 0 : October : Septeml : 5	, Caltrans from PM 0.69 to ² September 26, 20 1, 2007 ber 30, 2012	l.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years	es Highways SR 175 Friday, S 4,900 3 2 2 0 Cotober Septeml 5	, Caltrans from PM 0.69 to ² September 26, 20 1, 2007 ber 30, 2012	I.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Start Date End Date Number of Years Highway Type	es Highways SR 175 Friday, S 4,900 3 2 2 0 October Septeml 5 S	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le	1.16 14			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Start Date End Date Number of Years Highway Type Area	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Convent : Rural	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 per 30, 2012 tional 2 lanes or le	1.16 14 255			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed	es Highways : SR 175 : Friday, { : 4,900 : 3 : 2 : 0 : October : Septem! : 5 : Conven! : Rural : ≤55	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le	1.16 14 285			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date End Date Number of Years Highway Type Area Design Speed Torrain	es Highways : SR 175 : Friday, \$: 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Convent : Rural : ≤55 : Elat	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le	1.16 14 285			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Conveni : Rural : <55 : Flat	, Caltrans from PM 0.69 to 1 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le	1.16 14 255			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Start Date End Date Number of Years Highway Type Area Design Speed Terrain	es Highways : SR 175 : Friday, \$: 4,900 : 3 : 2 : 0 : October : Septemi : 5 : Conveni : Rural : ≤55 : Flat	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le	1.16 14 25S			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : October : Septemi : 5 : Conveni : Septemi : 5 : Conveni : ≤55 : Flat : 0.5	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles	1.16 14 28S			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Injuries Number of Fatalities Start Date End Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction	es Highways SR 175 Friday, S 4,900 3 2 2 0 October Septeml 5 Convent 5 Convent Septeml 5 Convent 5 Rural ≤55 Flat 0.5 East/We	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles ist	1.16 14 95S			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Conveni : Rural : ≤55 : Flat : 0.5 : East/We	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 Der 30, 2012 tional 2 lanes or le miles est	1.16 14 255			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction	es Highways : SR 175 : Friday, \$: 4,900 : 3 : 2 : 0 : October : Septemi : 5 : Conveni : Septemi :	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles set	n.			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction	es Highways : SR 175 : Friday, \$: 4,900 : 3 : 2 : 0 : October : Septemi : 5 : Conveni : Septemi : 5 : Conveni : Rural : ≤55 : Flat : 0.5 : East/We umber of C er Year x S	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles test tollisions x 1 Millic Segment Length x	I.16 14 25S n Number of Years			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction N	es Highways : SR 175 : Friday, S : 4,900 : 3 : 0 : October : Septeml : 5 : Convenl : Septeml :	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles set collisions x 1 Millic Segment Length x	I.16 14 2ss n Number of Years			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Fatalities Start Date End Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction NADT x 365 Days p	es Highways SR 175 Friday, S 4,900 3 2 2 3 2 3 2 3 3 2 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles est <u>iollisions x 1 Millic</u> Segment Length x 1,000,000	I.16 14 25S n Number of Years			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Injuries Start Date End Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction NADT x 365 Days p	es Highways Friday, S Friday, S 4,900 3 2 0 October Septeml Septeml Convent Rural S5 Convent Rural S5 East/We umber of C er Year x S X 365	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles est sollisions x 1 Millic Segment Length x 1,000,000 x 0.5	I.16 14 ess n Number of Years x 5			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction NADT x 365 Days p	es Highways : SR 175 : Friday, \$: 4,900 : 3 : 2 : 0 : October : Septemi : 5 : Convent : Septemi :	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or le miles set <u>collisions x 1 Millio</u> Segment Length x <u>1,000,000</u> x 0.5	I.16 14 ess n Number of Years x 5			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction NADT x 365 Days p 3 4,900 x	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Convent : Septeml : 5 : Convent : Rural : ≤55 : Flat : 0.5 : East/We umber of C er Year x S <u>x</u> 365 sion Rate	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 per 30, 2012 tional 2 lanes or le miles tional 2 lanes or le tional 2 lanes or le	I.16 14 Pss n Number of Years x 5 Injury Rate			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction <u>N</u> ADT x 365 Days p <u>3</u> 4,900 x	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Convent : Septeml : 5 : Convent : Septeml : ≤55 : Flat : 0.5 : East/We umber of C er Year x S x 365 sion Rate c/mvm	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or left miles set <u>iollisions x 1 Millic</u> Segment Length x <u>1,000,000</u> x 0.5 Fatality Rate 0.0%	I.16 14 sss n Number of Years x 5 Injury Rate 66.7%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Number of Fatalities Start Date End Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction <u>NADT x 365 Days p</u> <u>3</u> 4,900 x	es Highways Friday, S Friday, S 4,900 3 2 0 October Septeml 5 Convent Rural <55 Convent Rural <55 East/We umber of C er Year x S x 365 Sion Rate c/mym c/mym	, Caltrans from PM 0.69 to ⁴ September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or left miles est collisions x 1 Millic Segment Length x 1,000,000 x 0.5 Fatality Rate 0.0% 2.4%	I.16 14 14 255 255 255 255 255 255 255 255 255 25			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction <u>NADT x 365 Days p</u> 34,900 x	es Highways : SR 175 : Friday, § : 4,900 : 3 : 2 : 0 : October : Septemi : 5 : Convent : Septemi : 5 : Convent : septemi : 4,900 : 3 : 2 : 0 : October : Septemi : 5 : Convent : septemi : Se	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or left miles set collisions x 1 Millico Segment Length x 1,000,000 x 0.5 Fatality Rate 0.0% 2.4%	I.16 14 Pss n Number of Years x 5 Injury Rate 66.7% 40.1%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction <u>ADT x 365 Days p</u> 3 4,900 x	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : 5 : Convent : Septeml : 5 : Convent : Rural : ≤55 : Flat : 0.5 : East/We umber of C er Year x S x 365 sion Rate c/mvm	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or left miles set collisions x 1 Millic Segment Length x 1,000,000 x 0.5 Fatality Rate 0.0% 2.4%	1.16 14 285 n Number of Years x 5 Injury Rate 66.7% 40.1%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mill * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction <u>NADT x 365 Days p</u> <u>3</u> 4,900 <u>x</u> Study Segment Collisions Collision	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septeml : Septeml : Septeml : 4,900 : 3 : 2 : 0 : October : Septeml : 4,900 : 3 : 2 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or left miles set <u>iollisions x 1 Millic</u> Segment Length x <u>1,000,000</u> <u>x</u> 0.5 Fatality Rate <u>0.0%</u> 2.4%	I.16 14 255 m Number of Years x 5 Injury Rate 66.7% 40.1%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Injuries Number of Injuries Number of Fatalities Start Date End Date End Date End Date Mumber of Years Highway Type Area Design Speed Terrain Segment Length Direction <u>NADT x 365 Days p</u> <u>3</u> 4,900 <u>x</u> Study Segment <u>Collis</u> Statewide Average*	es Highways Friday, S 4,900 3 2 2 0 October Septeml 5 Convent Septeml 5 Convent 5 Conve 5 Conve 5 Conve 5 Conve 5 Conve 5 Convent 5 Con	, Caltrans from PM 0.69 to 4 September 26, 20 1, 2007 Der 30, 2012 tional 2 lanes or left miles est collisions x 1 Millic Segment Length x 1,000,000 x 0.5 Fatality Rate 0.0% 2.4%	I.16 14 255 n Number of Years x 5 <u>Injury Rate</u> 66.7% 40.1%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Fatalities Number of Fatalities Start Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction $\frac{N}{ADT \times 365 \text{ Days p}}$ $\frac{3}{4,900} \times \frac{Collis}{0.67}$ Statewide Average* $\frac{Collis}{0.89}$	es Highways : SR 175 : Friday, S : 4,900 : 3 : 2 : 0 : October : Septemil : Septemil : ≤55 : Flat : 0.5 : East/We umber of C er Year x S x 365 sion Rate c/mvm c/mvm	, Caltrans from PM 0.69 to 7 September 26, 20 1, 2007 ber 30, 2012 tional 2 lanes or left miles tional 2 lanes or left tional 2 lanes or left miles tional 2 lanes or left tional 2 lanes or left miles tional 2 lanes or left miles tional 2 lanes or left miles tional 2 lanes or left miles tional 2 lanes or left tional 2 lanes or lef	I.16 14 Pess nn Number of Years x 5 Injury Rate <u>66.7%</u> 40.1%			
ADT = average daily traffic volume c/mvm = collisions per million vehicle mil * 2010 Collision Data on California State Location Date of Count ADT Number of Collisions Number of Collisions Number of Injuries Number of Injuries Number of Injuries Number of Injuries Number of Injuries Number of Fatalities Stat Date End Date Number of Years Highway Type Area Design Speed Terrain Segment Length Direction $\frac{N}{ADT \times 365 \text{ Days p}}$ $\frac{3}{4,900} \times \frac{2011}{0.67}$ Statewide Average* $\frac{Collis}{0.68}$ ADT = average daily traffic volume c/mvm = collisions per million vehic * 2010 Collision Data on California	es Highways : SR 175 : Friday, { : 4,900 : 3 : 2 : 0 : October : Septemil : Septemil : Septemil : Septemil : Septemil : Convent : Rural : 455 : Flat : 0.5 : East/We umber of C er Year x S 365 sion Rate c/mvm c/mvm	, Caltrans from PM 0.69 to - September 26, 20 1, 2007 per 30, 2012 tional 2 lanes or le miles set tiollisions x 1 Millic Segment Length x 1,000,000 x 0.5 Fatality Rate 0.0% 2.4%	I.16 14 285 m Number of Years x 5 Injury Rate 66.7% 40.1%			

Appendix F

Vehicle Operational Analysis Methodology

Vehicular Operational Analysis Methodology

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersections were analyzed using methodologies published in the *Highway Capacity Manual* (HCM), Transportation Research Board, 2010. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle.

The Levels of Service for the intersections with side street stop controls, or those which are unsignalized and have one or two approaches stop controlled, were analyzed using the "Two-Way Stop-Controlled" intersection capacity method from the HCM. This methodology determines a level of service for each minor turning movement by estimating the level of average delay in seconds per vehicle. Results are presented for individual movements together with the weighted overall average delay for the intersection.

Roundabout intersection control were evaluated using the FHWA Roundabout Method, also contained within the Unsignalized Methodology of the HCM. This methodology determines intersection operation using empirical formulas based on observations at United States roundabouts, using basic geometric and volume data to calculate entering and circulating flows. This information is then translated to an overall average vehicle delay. The LOS break points have been set at the same delays as used in the signalized methodology for the purpose of this study. The ranges of delay associated with the various levels of service are indicated in Table E-1.

LOS	Two-Way Stop-Controlled	Roundabout & Traffic Signal
A	Delay of 0 to 10 seconds. Gaps in traffic are readily available for drivers exiting the minor street.	Delay of 0 to 10 seconds.
В	Delay of 10 to 15 seconds. Gaps in traffic are somewhat less readily available than with LOS A, but no queuing occurs on the minor street.	Delay of 10 to 20 seconds.
С	Delay of 15 to 25 seconds. Acceptable gaps in traffic are less frequent, and drivers may approach while another vehicle is already waiting to exit the side street.	Delay of 20 to 35 seconds.
D	Delay of 25 to 35 seconds. There are fewer acceptable gaps in traffic, and drivers may enter a queue of one or two vehicles on the side street.	Delay of 35 to 55 seconds.
E	Delay of 35 to 50 seconds. Few acceptable gaps in traffic are available, and longer queues may form on the side street.	Delay of 55 to 80 seconds.
F	Delay of more than 50 seconds. Drivers may wait for long periods before there is an acceptable gap in traffic for exiting the side streets, creating long queues.	Delay of more than 80 seconds.

 Table F-I

 Intersection Level of Service Criteria

Reference: Highway Capacity Manual, Transportation Research Board, 2000

Roadway Segment Level of Service Methodology

The roadway segment Level of Service methodology found in Chapter 15, "Two-Lane Highways," of the *Highway Capacity Manual* is the basis of the automobile LOS analysis. The methodology considers traffic volumes, terrain, roadway cross-section, the proportion of heavy vehicles, and the availability of passing

zones. The LOS criteria for two-lane highways differs depending on whether the highway is considered "Class I", "Class II", or "Class III". Class I highways are typically long-distance routes connecting major traffic generators or national highway networks where motorists expect to travel at high speeds. Motorists do not necessarily expect to travel at high speeds on Class II highways, which often function as scenic or recreational routes and typically serve shorter trips. Class III highways may be portions of Class I or Class II highways that pass through towns and communities and have a mix of local traffic and through traffic.

The measure of effectiveness by which Level of Service is determined on Class II highways is percent time spent following (PTSF), or the proportion of time that drivers on the highway are limited in their speed by a driver in front of them. Class III highways are measured by percent of free-flow speed (PFFS), which represents the ability of vehicles to travel at or near the posted speed limit. US 101 was defined as a Class III roadway and SR 175 was defined as a Class II roadway for the purposes of this analysis. A summary of the ATS, PTSF, and PFFS breakpoints is shown in Table E-2.

Automobile Level of Service Criteria							
Level of Service	Class II Highways	Class III Highways					
	PTSF (%)	PFFS (%)					
A	≤40	>91.7					
В	>40-55	>83.3-91.7					
С	>55-70	>75.0-83.3					
D	>70-85	>66.7-75.0					
E	≤85	≤66.7					

 Table F-2

 Automobile Level of Service Criteria

Notes: LOS = Level of Service;

ATS = Average Travel Speed;

PTSF = Percent Time Spent Following;

PFFS = Percent of Free-Flow Speed

Reference: Highway Capacity Manual, Transportation Research Board, 2010

Traffic Operation Standards

In the Guide for the Preparation of Traffic Impact Studies, Caltrans indicates that they endeavor to maintain operation at the transition from LOS C to LOS D, however, where operation is already below LOS C the existing measure of effectiveness should be maintained.

Appendix G

Intersection Level of Service Calculations

0.1

11/13/2014

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	0	8	0	480	520	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	11	11	2
Mvmt Flow	0	8	0	480	520	0

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1000	520	520	0	-	0	
Stage 1	520	-	-	-	-	-	
Stage 2	480	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	270	556	1046	-	-	-	
Stage 1	597	-	-	-	-	-	
Stage 2	622	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	270	556	1046	-	-	-	
Mov Cap-2 Maneuver	270	-	-	-	-	-	
Stage 1	597	-	-	-	-	-	
Stage 2	622	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	11.6	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1046	- 556	-	-	
HCM Lane V/C Ratio	-	- 0.014	-	-	
HCM Control Delay (s)	0	- 11.6	-	-	
HCM Lane LOS	А	- B	-	-	
HCM 95th %tile Q(veh)	0	- 0	-	-	

HCM 2010 TWSC 2: US 101 & SR 175

2

11/13/2014

Intersection

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Vol, veh/h	30	91	417	31	67	500
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	60	-	100	90	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	8	8	11	8	8	11
Mvmt Flow	33	101	463	34	74	556

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1167	463	0	-	463	0	
Stage 1	463	-	-	-	-	-	
Stage 2	704	-	-	-	-	-	
Critical Hdwy	6.48	6.28	-	-	4.18	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	-	-	2.272	-	
Pot Cap-1 Maneuver	208	587	-	0	1067	-	
Stage 1	621	-	-	0	-	-	
Stage 2	480	-	-	0	-	-	
Platoon blocked, %			-			-	
Mov Cap-1 Maneuver	194	587	-	-	1067	-	
Mov Cap-2 Maneuver	322	-	-	-	-	-	
Stage 1	621	-	-	-	-	-	
Stage 2	447	-	-	-	-	-	

Approach	WB	NB	SB	
HCM Control Delay, s	13.7	0	1	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT\	NBLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)	-	322	587	1067	-	
HCM Lane V/C Ratio	-	0.104	0.172	0.07	-	
HCM Control Delay (s)	-	17.5	12.4	8.6	-	
HCM Lane LOS	-	С	В	А	-	
HCM 95th %tile Q(veh)	-	0.3	0.6	0.2	-	

0.9

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	43	9	13	417	469	62
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	400	-	-	200
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	11	11	2
Mvmt Flow	48	10	14	463	521	69

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1013	521	521	0	-	0	
Stage 1	521	-	-	-	-	-	
Stage 2	492	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	265	555	1045	-	-	-	
Stage 1	596	-	-	-	-	-	
Stage 2	615	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	261	555	1045	-	-	-	
Mov Cap-2 Maneuver	394	-	-	-	-	-	
Stage 1	596	-	-	-	-	-	
Stage 2	607	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	15.1	0.3	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1045	- 415	-	-	
HCM Lane V/C Ratio	0.014	- 0.139	-	-	
HCM Control Delay (s)	8.5	- 15.1	-	-	
HCM Lane LOS	А	- C	-	-	
HCM 95th %tile Q(veh)	0	- 0.5	-	-	

2.6

11/13/2014

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	8	4	0	4	4	4	4	32	12	20	40	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	4	0	4	4	4	4	32	12	20	40	20

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	140	142	50	138	146	38	60	0	0	44	0	0
Stage 1	90	90	-	46	46	-	-	-	-	-	-	-
Stage 2	50	52	-	92	100	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	830	749	1018	833	745	1034	1544	-	-	1564	-	-
Stage 1	917	820	-	968	857	-	-	-	-	-	-	-
Stage 2	963	852	-	915	812	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	813	737	1018	819	733	1034	1544	-	-	1564	-	-
Mov Cap-2 Maneuver	813	737	-	819	733	-	-	-	-	-	-	-
Stage 1	914	809	-	965	854	-	-	-	-	-	-	-
Stage 2	952	849	-	899	801	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	9.7	9.3	0.6	1.8
HCM LOS	А	А		

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1544	-	-	786	845	1564	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.015	0.014	0.013	-	-	
HCM Control Delay (s)	7.3	0	-	9.7	9.3	7.3	0	-	
HCM Lane LOS	А	А	-	А	А	А	А	-	
HCM 95th %tile Q(veh)	0	-	-	0	0	0	-	-	
Intersection

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	99	7	42	128	3	53	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	Stop	-	None	-	None	
Storage Length	-	-	0	-	-	0	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	81	81	81	81	81	81	
Heavy Vehicles, %	8	2	2	8	2	2	
Mvmt Flow	122	9	52	158	4	65	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	122	0	122	122	
Stage 1	-	-	-	-	122	-	
Stage 2	-	-	-	-	0	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1465	-	873	929	
Stage 1	-	-	-	-	903	-	
Stage 2	-	-	-	-	-	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1465	-	842	929	
Mov Cap-2 Maneuver	-	-	-	-	842	-	
Stage 1	-	-	-	-	903	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	1.9	9.2	
HCM LOS			А	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	929	-	-	1465	-	
HCM Lane V/C Ratio	0.07	-	-	0.035	-	
HCM Control Delay (s)	9.2	-	-	7.5	-	
HCM Lane LOS	А	-	-	А	-	
HCM 95th %tile Q(veh)	0.2	-	-	0.1	-	

MOVEMENT SUMMARY

𝒞 Site: SR 175 & Old River Road

PM Peak Hour Existing Conditions Roundabout

Movem	Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South: N	IB SR 17	5-Main Street	70	V/C	586	_	ven	IL	_	per veri	прп	
3	12	1	2.0	0.097	3.5	LOSA	0.4	11.3	0.06	0.01	25.8	
8	 T1	12	2.0	0.097	3.5	LOSA	0.4	11.3	0.06	0.01	24.9	
18	R2	116	8.0	0.097	3.5	LOSA	0.4	11.3	0.06	0.01	23.7	
Approac	h	129	74	0.097	3.5	LOSA	0.4	11.3	0.06	0.01	23.8	
7.001000		120	1.4	0.007	0.0	LOON	0.4	11.0	0.00	0.01	20.0	
East: WI	3 Lakepo	rt-Hopland 175	Road									
1	L2	80	8.0	0.065	3.3	LOS A	0.3	7.3	0.08	0.02	28.1	
6	T1	1	2.0	0.065	3.3	LOS A	0.3	7.3	0.08	0.02	28.4	
16	R2	4	2.0	0.065	3.3	LOS A	0.3	7.3	0.08	0.02	27.2	
Approac	h	85	7.6	0.065	3.3	LOS A	0.3	7.3	0.08	0.02	28.0	
North: S	B Old Riv	/er Road										
7	L2	4	2.0	0.078	3.4	LOS A	0.3	8.9	0.22	0.09	26.1	
4	T1	96	2.0	0.078	3.4	LOS A	0.3	8.9	0.22	0.09	25.1	
14	R2	1	2.0	0.078	3.4	LOS A	0.3	8.9	0.22	0.09	24.0	
Approac	h	101	2.0	0.078	3.4	LOS A	0.3	8.9	0.22	0.09	25.2	
West: FI	3 Drivewa	av										
5	L2	4	2.0	0.005	3.1	LOS A	0.0	0.5	0.31	0.14	29.6	
2	T1	1	2.0	0.005	3.1	LOS A	0.0	0.5	0.31	0.14	29.3	
12	R2	1	2.0	0.005	3.1	LOSA	0.0	0.5	0.31	0.14	28.0	
Approac	h	6	2.0	0.005	3.1	LOSA	0.0	0.5	0.31	0.14	29.3	
PP 100												
All Vehic	les	321	5.7	0.097	3.4	LOS A	0.4	11.3	0.12	0.04	25.4	

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Thursday, November 13, 2014 2:33:29 PM	Copyright © 2000-2014 Akcelik and Associates Pty Ltd
SIDRA INTERSECTION 6.0.24.4877	www.sidrasolutions.com
Project: N:\AAA\MEX\MEX\096MEX\SIDRA\SR175-Old R	iver Rd.sip6
8000493, 6019158, W-TRANS, PLUS / Floating	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	0	10	0	624	676	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	11	11	2
Mvmt Flow	0	10	0	624	676	0

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1300	676	676	0	-	0	
Stage 1	676	-	-	-	-	-	
Stage 2	624	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	178	453	915	-	-	-	
Stage 1	505	-	-	-	-	-	
Stage 2	534	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	178	453	915	-	-	-	
Mov Cap-2 Maneuver	178	-	-	-	-	-	
Stage 1	505	-	-	-	-	-	
Stage 2	534	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	13.1	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	915	- 453	-	-	
HCM Lane V/C Ratio	-	- 0.022	-	-	
HCM Control Delay (s)	0	- 13.1	-	-	
HCM Lane LOS	А	- B	-	-	
HCM 95th %tile Q(veh)	0	- 0.1	-	-	

Intersection

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Vol, veh/h	42	127	542	40	87	650	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	Yield	-	Free	-	None	
Storage Length	0	60	-	100	90	-	
Veh in Median Storage, #	0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	8	8	11	8	8	11	
Mvmt Flow	42	127	542	40	87	650	

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1366	542	0	-	542	0	
Stage 1	542	-	-	-	-	-	
Stage 2	824	-	-	-	-	-	
Critical Hdwy	6.48	6.28	-	-	4.18	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	-	-	2.272	-	
Pot Cap-1 Maneuver	157	529	-	0	997	-	
Stage 1	571	-	-	0	-	-	
Stage 2	421	-	-	0	-	-	
Platoon blocked, %			-			-	
Mov Cap-1 Maneuver	143	529	-	-	997	-	
Mov Cap-2 Maneuver	271	-	-	-	-	-	
Stage 1	571	-	-	-	-	-	
Stage 2	384	-	-	-	-	-	

Approach	WB	NB	SB	
HCM Control Delay, s	15.6	0	1.1	
HCM LOS	С			

Minor Lane/Major Mvmt	NBT	WBLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)	-	271	529	997	-	
HCM Lane V/C Ratio	-	0.155	0.24	0.087	-	
HCM Control Delay (s)	-	20.7	13.9	9	-	
HCM Lane LOS	-	С	В	А	-	
HCM 95th %tile Q(veh)	-	0.5	0.9	0.3	-	

MOVEMENT SUMMARY

₩ Site: US 101 & SR 175 - Future PM

PM Peak Hour Future Conditions Roundabout

Movem	ent Perform	nance - Ve	ehicles								
Mov ID	OD Mov	Demano Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: U	S 101										
8	T1	542	11.0	0.494	8.5	LOS A	3.2	85.7	0.35	0.19	33.0
18	R2	40	8.0	0.494	8.5	LOS A	3.2	85.7	0.35	0.19	32.2
Approac	h	582	10.8	0.494	8.5	LOS A	3.2	85.7	0.35	0.19	33.0
East: SR	175										
1	L2	42	8.0	0.232	7.6	LOS A	0.9	25.2	0.61	0.59	32.7
16	R2	127	8.0	0.232	7.6	LOS A	0.9	25.2	0.61	0.59	31.9
Approac	h	169	8.0	0.232	7.6	LOS A	0.9	25.2	0.61	0.59	32.1
North: U	S 101										
7	L2	87	8.0	0.595	10.1	LOS B	4.7	126.9	0.28	0.12	32.0
4	T1	650	11.0	0.595	10.1	LOS B	4.7	126.9	0.28	0.12	32.0
Approac	h	737	10.6	0.595	10.1	LOS B	4.7	126.9	0.28	0.12	32.0
All Vehic	les	1488	10.4	0.595	9.2	LOS A	4.7	126.9	0.35	0.20	32.4

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Wednesday, July 15, 2015 10:02:16 AM SIDRA INTERSECTION 6.0.24.4877 Project: N:\AAA\MEX\096MEX\SIDRA\US101-SR175.sip6 8000493, 6019158, W-TRANS, PLUS / Floating

1

Intersection

Int Delay, s/veh

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	56	12	17	542	610	81	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	400	-	-	200	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	11	11	2	
Mvmt Flow	56	12	17	542	610	81	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1186	610	610	0	-	0	
Stage 1	610	-	-	-	-	-	
Stage 2	576	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	208	494	969	-	-	-	
Stage 1	542	-	-	-	-	-	
Stage 2	562	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	204	494	969	-	-	-	
Mov Cap-2 Maneuver	343	-	-	-	-	-	
Stage 1	542	-	-	-	-	-	
Stage 2	552	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	17.2	0.3	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	969	- 363	-	-	
HCM Lane V/C Ratio	0.018	- 0.187	-	-	
HCM Control Delay (s)	8.8	- 17.2	-	-	
HCM Lane LOS	А	- C	-	-	
HCM 95th %tile Q(veh)	0.1	- 0.7	-	-	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	10	5	0	5	5	5	5	42	16	26	52	26
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	5	0	5	5	5	5	42	16	26	52	26

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	182	185	65	180	190	50	78	0	0	58	0	0
Stage 1	117	117	-	60	60	-	-	-	-	-	-	-
Stage 2	65	68	-	120	130	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	779	709	999	782	705	1018	1520	-	-	1546	-	-
Stage 1	888	799	-	951	845	-	-	-	-	-	-	-
Stage 2	946	838	-	884	789	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	759	694	999	765	690	1018	1520	-	-	1546	-	-
Mov Cap-2 Maneuver	759	694	-	765	690	-	-	-	-	-	-	-
Stage 1	885	785	-	948	842	-	-	-	-	-	-	-
Stage 2	933	835	-	863	775	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	10	9.6	0.6	1.8
HCM LOS	В	А		

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1520	-	-	736	802	1546	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.02	0.019	0.017	-	-	
HCM Control Delay (s)	7.4	0	-	10	9.6	7.4	0	-	
HCM Lane LOS	А	А	-	В	А	А	А	-	
HCM 95th %tile Q(veh)	0	-	-	0.1	0.1	0.1	-	-	

Intersection

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	139	10	59	179	4	74
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	Stop	-	None	-	None
Storage Length	-	-	0	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	8	2	2	8	2	2
Mvmt Flow	139	10	59	179	4	74

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	139	0	139	139	
Stage 1	-	-	-	-	139	-	
Stage 2	-	-	-	-	0	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1445	-	854	909	
Stage 1	-	-	-	-	888	-	
Stage 2	-	-	-	-	-	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1445	-	819	909	
Mov Cap-2 Maneuver	-	-	-	-	819	-	
Stage 1	-	-	-	-	888	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB	
HCM Control Delay, s	0	1.9	9.3	
HCM LOS			А	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	909	-	-	1445	-	
HCM Lane V/C Ratio	0.081	-	-	0.041	-	
HCM Control Delay (s)	9.3	-	-	7.6	-	
HCM Lane LOS	А	-	-	А	-	
HCM 95th %tile Q(veh)	0.3	-	-	0.1	-	

MOVEMENT SUMMARY

Site: SR 175 & Old River Road - Future

PM Peak Hour Future Conditions Roundabout

Movem	Movement Performance - Vehicles										
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back c	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: N		ven/n ain Street	%	V/C	sec		ven	π		per ven	mpn
2		1	2.0	0 126	20	1084	0.6	16.4	0.00	0.02	25.6
0		47	2.0	0.130	3.0		0.0	10.4	0.00	0.02	20.0
8		17	2.0	0.136	3.8	LOSA	0.6	16.4	0.08	0.02	24.7
18	R2	162	8.0	0.136	3.8	LOSA	0.6	16.4	0.08	0.02	23.5
Approac	h	180	7.4	0.136	3.8	LOS A	0.6	16.4	0.08	0.02	23.6
East: W	3 Lakeport-H	opland 175	Road								
1	L2	112	8.0	0.091	3.5	LOS A	0.4	10.5	0.11	0.03	27.9
6	T1	1	2.0	0.091	3.5	LOS A	0.4	10.5	0.11	0.03	28.3
16	R2	6	2.0	0.091	3.5	LOS A	0.4	10.5	0.11	0.03	27.1
Approac	h	119	7.6	0.091	3.5	LOS A	0.4	10.5	0.11	0.03	27.9
North: S	B Old River F	Road									
7	L2	6	2.0	0.113	3.8	LOS A	0.5	13.1	0.27	0.14	25.9
4	T1	134	2.0	0.113	3.8	LOS A	0.5	13.1	0.27	0.14	25.0
14	R2	1	2.0	0.113	3.8	LOS A	0.5	13.1	0.27	0.14	23.8
Approac	h	141	2.0	0.113	3.8	LOS A	0.5	13.1	0.27	0.14	25.0
West: El	3 Driveway										
5	L2	6	2.0	0.007	3.4	LOS A	0.0	0.8	0.37	0.19	29.1
2	T1	1	2.0	0.007	3.4	LOS A	0.0	0.8	0.37	0.19	28.9
12	R2	1	2.0	0.007	3.4	LOS A	0.0	0.8	0.37	0.19	27.7
Approac	h	8	2.0	0.007	3.4	LOS A	0.0	0.8	0.37	0.19	28.9
All Vehic	les	448	5.7	0.136	3.7	LOS A	0.6	16.4	0.15	0.06	25.2

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Wednesday, July 15, 2015 9:58:12 AM	Copyright © 2000-2014 Akcelik and Associates Pty Ltd
SIDRA INTERSECTION 6.0.24.4877	www.sidrasolutions.com
Project: N:\AAA\MEX\MEX\096MEX\SIDRA\SR175-Old R	iver Rd.sip6
8000493, 6019158, W-TRANS, PLUS / Floating	

Appendix H

Roadway Segment Level of Service Calculations

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB Agency or Company W-Trans	Highway / Direction of Travel From/To	US 101 Northbound Mountain House Road to SR 175			
Date Performed 8/17/2015 Analysis Time Period Weekday PM Peak Hour	Jurisdiction Analysis Year	Mendocino County Existing Conditions			
Project Description: Hopland Main St Corridor EFS					
Input Data	1				
Shoulder width It Lane width It Lane width It Segment length, L ₁ mi Analysis direction vol., V ₄ 719veh/h	Class I highway Terrain Level Grade Length mi L Peak-hour factor, PHF No-passing zone % Trucks and Buses , P _T	Class II highway Class III highway Rolling Ip/down 1.00 100% 10 %			
Opposing direction vol., V. 721veh/h	% Recreational vehicles, P	R 1%			
Shoulder width ft 6.0 Lane Width ft 12.0 Segment Length mi 0.1	Access points <i>mi</i>	1/mi			
Average Travel Speed	-				
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.1	1.1			
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor, f _{HV,ATS} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	0.990	0.990			
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00			
Demand flow rate ² , v _i (pc/h) v _i =V _i / (PHF* f _{g,ATS} * f _{HV,ATS})	726	728			
Free-Flow Speed from Field Measurement	Estimated Fre	e-Flow Speed			
Mean speed of sample ³ , S _{FM} Total demand flow rate, both directions, v Free-flow speed, FFS=S _{FM} +0.00776(v / f _{HV,ATS}) Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.4 mi/h	Base free-flow speed ⁴ , BFFS Adj. for lane and shoulder width, ⁴ f_{LS} (Exhibit 15- Adj. for access points ⁴ , f_A (Exhibit 15-8) Free-flow speed, FFS (FSS=BFFS- f_{LS} - f_A) Average travel speed, ATS _d =FFS-0.00776($v_{d,AT}$	45.0 mi/h 7) 0.0 mi/h 0.3 mi/h 44.8 mi/h s ⁺ v _{o,ATS}) - f _{np,ATS} 32.1 mi/h			
Percent Time-Spent-Following	Percent free flow speed, PFFS	71.6 %			
recent fine open forowing	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.1	1.1			
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0			
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ $P_T(E_T$ -1)+ $P_R(E_R$ -1))	0.990	0.990			
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² , v _/ (pc/h) v _i =V _i /(PHF*f _{HV,PTSF} * f _{g,PTSF})	726	728			
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av d})	6	6.0			
Adj. for no-passing zone, f	2	7.7			
Percent time-spent-following, PTSF (%)=BPTSF +f pror *(V_(pror / V_(pror + V_pror))	7	9.8			
Level of Service and Other Performance Measures					
Level of service, LOS (Exhibit 15-3)		D			
Volume to capacity ratio, v/c	0	.43			
Capacity, C _{d,ATS} (Equation 15-12) pc/h	10	583			
Capacity, C _{d,PTSF} (Equation 15-13) pc/h	1:	700			
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)	7	1.6			
Directional demand flow rate in outside lane, v (Eq. 15.34) vah/b	71	19.0			
Effective width. Wv (Eq. 15-29) ft	22				
Effective speed factor, S, (Eq. 15-30)	3				
Bicycle level of service score, BLOS (Eq. 15-31)	4	49			
Bicycle level of service (Exhibit 15-4)		D			
Notes 1. Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conterrain. 2. If $v_i(v_d \text{ or } v_o) >=1,700 \text{ pc/h}$, terminate analysisthe LOS is F. 3. For the analysis direction only and for v>200 veh/h. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Fourtion 15-10	ditions. For the purpose of grade adjustment, specifi	c downgrade segments are treated as level			

HCS 2010TM Version 6.50

Generated: 8/17/2015 4:26 PM

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB	Highway / Direction of Travel	US 101 Southbound SR 175 to Mountain House Rd			
Date Performed 8/17/2015	Jurisdiction	Mendocino County			
Analysis Time Period Weekday PM Peak Hour Project Description: Honland Main St Corridor EES	Analysis Year	Existing Conditions			
Input Data					
Analysis direction vol., V _d 721veh/h Segment length, L ₁ mi Analysis direction vol., V _d 721veh/h Opposing direction vol., V _d 719veh/h Shoulder width ft 6.0 Lane Width ft 6.0 Lane Width ft 0.1 Average Travel Speed Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	Class I highway Terrain ✓ Level Grade Length mi Peak-hour factor, PHF No-passing zone % Trucks and Buses , P _T % Recreational vehicles, P Access points mi Analysis Direction (d) 1.1	Class II highway Class III highway Rolling Jp/down 1.00 100% 10 % R 1% 1/mi Opposing Direction (o) 1.1			
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor, $f_{HV,ATS}$ =1/ (1+ $P_T(E_T-1)+P_R(E_R-1)$)	0.990	0.990			
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00			
Demand flow rate ² , v_i (pc/h) $v_i = V_i$ / (PHF* $f_{g,ATS}$ * $f_{HV,ATS}$)	728	726			
Free-Flow Speed from Field Measurement	Estimated Fre	e-Flow Speed			
Mean speed of sample ³ , S _{FM} Total demand flow rate, both directions, <i>v</i> Free-flow speed, FFS=S _{FM} +0.00776(<i>v</i> / f _{HV,ATS}) Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.4 mi/h	Adj. for lane and shoulder width, ⁴ f_{LS} (Exhibit 15- Adj. for access points ⁴ , f_A (Exhibit 15-8) Free-flow speed, FFS (FSS=BFFS- f_{LS} - f_A) Average travel speed, ATS _d =FFS-000776(v _{d,AT} Percent free flow speed PEFS	7) 0.0 mi/h 0.3 mi/h 44.8 mi/h s ⁺ v _{o,ATS}) - f _{np,ATS} 32.0 mi/h 71.6 %			
Percent Time-Spent-Following	refeatured now speed, if it o	11.0 78			
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.1	1.1			
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0			
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	0.990	0.990			
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² , v _/ (pc/h) v _i =V _i /(PHF*f _{HV,PTSF} * f _{g,PTSF})	728	726			
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1- $e^{av_d^b}$)	6	6.3			
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)	2	7.7			
Percent time-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *($v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF}$)	8	0.2			
Level of Service and Other Performance Measures	_				
Level of service, LOS (Exhibit 15-3)		D			
Capacity C (Equation 15-12) pc/b	1	.43 683			
Capacity, C _{d,ATS} (Equation 15-12) pc/h	1	700			
Capacity, Cd, PTSF (Equation 15-15) point		16			
Bicycle Level of Service	,	1.0			
Directional demand flow rate in outside lane, v_{OI} (Eq. 15-24) veh/h	72	21.0			
Effective width, Wv (Eq. 15-29) ft	24	4.00			
Effective speed factor, S _t (Eq. 15-30)	3	.84			
Bicycle level of service score, BLOS (Eq. 15-31)	4	.49			
Bicycle level of service (Exhibit 15-4)		D			
Notes 1. Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conc terrain. 2. If v _i (v _d or v _o) >=1,700 pc/h, terminate analysis—the LOS is F. 3. For the analysis direction only and for v>200 veh/h. 4. For the analysis direction only and for v>200 veh/h. 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade	itions. For the purpose of grade adjustment, specifi	c downgrade segments are treated as level			

HCS 2010TM Version 6.50

Generated: 8/17/2015 4:03 PM

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB	Highway / Direction of Travel	SR 175 Eastbound Old River to US101 e/o Tracks			
Date Performed 8/17/2015	Jurisdiction	Mendocino County			
Analysis Time Period Weekday PM Peak Hour Project Description: Hopland Main St Corridor EES	Analysis Year	Existing Conditions			
Input Data					
Lane width tt					
Lane width	Class I highway	Class II highway Class III highway			
Shoulder width ft	Terrain V Level	Rolling			
Commont Ioneth I mi	Peak-hour factor, PHF	1.00			
Segment rengut, L III	No-passing zone	100%			
Analysis direction vol., V _d 152veh/h	Show North Arrow % Processing Lychicles 7	/ 70			
Opposing direction vol., V _o 152veh/h	Access points <i>mi</i>	R / 7% 0/mi			
Lane Width ft 12.0					
Segment Length mi 0.7					
Average Travel Speed	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks E ₌ (Exhibit 15-11 or 15-12)	17	1 7			
	10	10			
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor, f _{HV,ATS} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	0.953	0.953			
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00			
Demand flow rate ² , v_i (pc/h) $v_i = V_i$ / (PHF* $f_{a,ATS}$ * $f_{HV,ATS}$)	159	159			
Free-Flow Speed from Field Measurement	Estimated Fre	ee-Flow Speed			
	Base free-flow speed ⁴ , BFFS	50.0 mi/h			
Mean speed of sample ³ , S _{FM}	Adj. for lane and shoulder width, ⁴ f _{I S} (Exhibit 15-	7) 0.0 mi/h			
Total demand flow rate, both directions, v	Adj. for access points ⁴ , f _A (Exhibit 15-8)	0.0 mi/h			
Free-flow speed, FFS=S _{FM} +0.00776(<i>v</i> / f _{HV,ATS})	Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A)	50.0 mi/h			
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 3.4 mi/h	Average travel speed, ATS _d =FFS-0.00776(v _{d AT}	$r_{\rm S} + v_{0,\rm ATS}$) - f _{np,ATS} 44.1 mi/h			
	Percent free flow speed, PFFS	88.3 %			
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.1	1.1			
Passenger-car equivalents for RVs, E _o (Exhibit 15-18 or 15-19)	1.0	1.0			
Heavy-vehicle adjustment factor. $f_{ex} = 1/(1 + P_{\tau}(E_{\tau}-1)+P_{\tau}(E_{\tau}-1))$	0.993	0.993			
Grade adjustment factor ¹ f (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² $v(pc/b) v=V/(DHE^{*f})$	153	153			
Directional now rate, v_{ij}^{a} pc/n) v_{i}^{-} v_{ij}^{a} (FFF $_{HV,PTSF}$ $_{g,PTSF}$)	100	100			
Base percent time-spent-following ⁺ , BPTSF _d (%)=100(1-e ^{av} d)	1	7.1			
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)	5	9.6			
Percent time-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF}*(v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$	4	6.9			
Level of Service and Other Performance Measures	-				
Level of service, LOS (Exhibit 15-3)		B			
Capacity, C _{1,470} (Equation 15-12) pc/h	11	620			
Capacity, C. and C. Equation 15-13) pc/h	1	688			
Paraset Free Flew Second REFS. (Fruetice 45.44, Class III only)		0 0			
Ricycle Level of Service		0.5			
Directional demand flow rate in outside lane. Vol. (Ed. 15-24) veh/h	15	52.0			
Effective width, Wv (Eq. 15-29) ft	28.32				
Effective speed factor, S_{t} (Eq. 15-30)	4	.17			
Bicycle level of service score, BLOS (Eq. 15-31)	1	.86			
Bicycle level of service (Exhibit 15-4)		В			
Notes					
 Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base cond terrain. If v_i(v_d or v_o) >=1,700 pc/h, terminate analysisthe LOS is F. 	itions. For the purpose of grade adjustment, specifi	c downgrade segments are treated as level			
 For the analysis direction only and for v>200 veh/h. For the analysis direction only Exhibit 15-20 provides coefficients a and b for Equation 15-10. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade 					

6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a

Copyright © 2013 University of Florida, All Rights Reserved

HCS 2010TM Version 6.50

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB Agency or Company W-Trans	Highway / Direction of Travel From/To	SR 175 Westbound Old River to US101 e/o Tracks			
Date Performed 8/17/2015 Analysis Time Period Weekday PM Peak Hour	Jurisdiction Analysis Year	Mendocino County Existing Conditions			
Project Description: Hopland Main St Corridor EFS					
Input Data	1				
Segment length, L ₁ mi	Class I highway Terrain Level Grade Length mi U Peak-hour factor, PHF No-passing zone	Class II highway Class III highway Rolling p/down 1.00 100%			
Analysis direction vol., V _d 152veh/h	Show North Arrow % Trucks and Buses , P _T	7 %			
Opposing direction vol., Vo 152veh/h Shoulder width ft 6.0 Lane Width ft 12.0 Segment Length mi 0.7	% Recreational vehicles, P ₁ Access points <i>mi</i>	R 1% 0/mi			
Average Travel Speed	Analysis Direction (d)	Opposing Direction (a)			
Passenger car equivalents for trucks E (Exhibit 15.11 or 15.12)					
	1.7	1.7			
Passenger-car equivalents for KVS, E _R (Exhibit 15-11 of 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor, $f_{HV,ATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.953	0.953			
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00			
Demand flow rate ² , v _i (pc/h) v _i =V _i / (PHF* f _{g,ATS} * f _{HV,ATS})	159	159			
Free-Flow Speed from Field Measurement	Estimated Free	e-Flow Speed			
Mean speed of sample ³ , S _{FM} Total demand flow rate, both directions, v Free-flow speed, FFS=S _{FM} +0.00776(v / f _{HV,ATS}) Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 3.4 mi/h	Base free-flow speed ⁴ , BFFS Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15-7 Adj. for access points ⁴ , f _A (Exhibit 15-8) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Average travel speed, ATS _d =FFS-0.00776(v _{d,ATS}	50.0 mi/h 0.0 mi/h 0.0 mi/h 50.0 mi/h s + v _{o,ATS}) - f _{np,ATS} 44.1 mi/h			
Percent Time-Spent-Following	Percent free flow speed, PFFS	88.3 %			
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.1	1.1			
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0			
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	0.993	0.993			
Grade adjustment factor ¹ , f _{aptse} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² , v(pc/h) v=V/(PHF*f_v, pros* f_pros)	153	153			
Page percent time event following ⁴ PDTSE (%)=100(1 e^{aV_b}	17	7 1			
base percent time-spent-tonowing, perior _d (%)=100(1-e d)					
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)		9.6			
Percent time-spent-following, $PTSF_d(\%) = BPTSF_d + f_{np,PTSF} * (v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$	40	5.9			
Level of Service and Other Performance Measures Level of service LOS (Exhibit 15-3)	1	3			
Volume to capacity ratio, v/c	0.	09			
Capacity, C _{d,ATS} (Equation 15-12) pc/h	16	20			
Capacity, C _{d,PTSF} (Equation 15-13) pc/h	16	88			
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)	88	3.3			
Bicycle Level of Service					
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	15	2.0			
Effective width, Wv (Eq. 15-29) ft	28	.32			
Effective speed factor, S _t (Eq. 15-30)	4.	17			
Bicycle level of service score, BLOS (Eq. 15-31)	1.	86			
Notes		2			
 Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conterrain. If v_i(v_d or v_o) >=1,700 pc/h, terminate analysisthe LOS is F. For the analysis direction only and for v>200 veh/h. For the analysis direction only For the analysis direction only Exhibit 15-20 provides coefficients a and b for Equation 15-10. Lee alternative Exhibit 15-14 if some turks operate at crawl speeds on a specific downgrad. 	ditions. For the purpose of grade adjustment, specific	: downgrade segments are treated as level			

HCS 2010TM Version 6.50

Generated: 8/17/2015 4:34 PM

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB Agency or Company W-Trans	Highway / Direction of Travel	US 101 Northbound Mountain House Road to SR 175			
Date Performed 8/17/2015	Jurisdiction	Mendocino County			
Project Description: Hopland Main St Corridor EFS	Analysis real	Future Conditions			
Input Data					
A Shoulder width					
Lane width					
Lane width It	Class I highway	Class II highway Class III highway			
t Shoulder widthtt _	Terrain V Level	Rolling			
e Segment length 1, mi	Peak-hour factor, PHF	1.00			
	% Trucks and Buses P-	10 %			
Analysis direction vol., V _d 935veh/h	Show North Arrow % Recreational vehicles F	P_ 1%			
Opposing direction vol., V _o 937veh/h	Access points <i>mi</i>	7/mi			
Lane Width ft 12.0					
Segment Length mi 0.1 Average Travel Speed					
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.0	1.0			
Passenger-car equivalents for RVs, E _p (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor f, $\dots = 1/(1 + P_{-}(F_{-}-1) + P_{-}(F_{-}-1))$	1.000	1,000			
$\frac{1}{(1+r)^{-1}} = \frac{1}{(1+r)^{-1}} = \frac{1}{(1+r)^$	1.00	1 00			
Diade adjustment actor, r _{g,ATS} (Exhibit 13-9)	0.05	007			
Demand flow rate ⁻ , v _i (pc/n) v _i =v _i / (PHF ⁺ f _{g,ATS} ⁺ f _{HV,ATS})	930 Estimated Err	937			
		45.0 mi/h			
Mean speed of sample ³ S	Adi for lane and shoulder width ⁴ f (Exhibit 15-	7) 00 mi/h			
Total demand flow rate, both directions, v	Adi for access points ⁴ f. (Exhibit 15-8)	0.3 mi/h			
Free-flow speed, FFS=S _{FM} +0.00776(<i>v</i> / f _{HV,ATS})	Free-flow speed EES (ESS=BEES-ff.)	44.8 mi/h			
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.1 mi/h	Average travel speed ATS = $EFS = 0.00776(y_{1.1})$				
	Percent free flow speed, PFFS	65.0 %			
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (a)			
Passenger-car equivalents for trucks. E-(Exhibit 15-18 or 15-19)	1.1	1.1			
Passenger.car.equivalents for RVs. F. (Exhibit 15-18 or 15-19)	10	10			
Production of the production of the production of the product of	0.990	0.990			
$\frac{1}{1000} = \frac{1}{1000} = 1$	0.990	0.550			
Grade adjustment factor', f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² , v _i (pc/h) v _i =V _i /(PHF*f _{HV,PTSF} * f _{g,PTSF})	944	946			
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d [°])	7	5.7			
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)	2	20.6			
Percent time-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF} *(v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$	8	6.0			
Level of Service and Other Performance Measures	-				
Level of service, LOS (Exhibit 15-3)		E			
Capacity, C (Equation 15-12) nc/h	1	700			
Canacity C (Equation 15.13) pc/h	1	700			
Departs, od, PTSF (Equation 10-10) (Construction 45.44 Characteristics)	′				
Percent Free-From Speed PFFSd(Equation 15-11 - Class III only) Biovole Level of Service	6	0.0			
Directional demand flow rate in outside lane. v_{rec} (Eq. 15-24) veh/h	93	35.0			
Effective width, Wv (Eq. 15-29) ft	24	4.00			
Effective speed factor, S _f (Eq. 15-30)	3	.84			
Bicycle level of service score, BLOS (Eq. 15-31)	4	.62			
Bicycle level of service (Exhibit 15-4)		E			
Notes					
 Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conc terrain. If v.(v. or v.) >=1.700 pc/h. terminate analysis-the LOS is F. 	itions. For the purpose of grade adjustment, specifi	c downgrade segments are treated as level			
3. For the analysis direction only and for v>200 veh/h. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 is some trucks operate at crawl speeds on a specific downgrade					

6. Use alternative Exhibit 15-14 if some trucks opera

Copyright © 2013 University of Florida, All Rights Reserved

HCS 2010TM Version 6.50

Generated: 8/17/2015 4:40 PM

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB Agency or Company W-Trans	Highway / Direction of Travel	US 101 Southbound SR 175 to Mountain House Rd			
Date Performed 8/17/2015	Jurisdiction	Mendocino County			
Project Description: Hopland Main St Corridor EFS					
Input Data	-				
Lane width					
Lane widthtt.	Class I highway	Class II highway 🗹 Class III highway			
Shoulder width ft	Terrain ⊻ Level Grade Length mi U	D/down			
• Seament length. L. mi	Peak-hour factor, PHF	1.00			
	% Trucks and Buses . P-	10 %			
Analysis direction vol., V _d 93/veh/h	% Recreational vehicles. P	1%			
Opposing direction vol., V _o 935veh/h Shoulder width ft 6.0	Access points mi	n 1/mi			
Lane Width ft 12.0					
Average Travel Speed					
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0			
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor, $f_{HVATS}=1/(1+P_{T}(E_{T}-1)+P_{P}(E_{P}-1))$	1.000	1.000			
Grade adjustment factor ¹ . f. erro (Exhibit 15-9)	1.00	1.00			
Demand flow rate ² v. (nc/h) v=V. / (PHE* f $x = x^*$ f $x = x = x^*$)	937	935			
Free-Flow Speed from Field Measurement	Estimated Fre	e-Flow Speed			
	Base free-flow speed ⁴ BFFS	45.0 mi/h			
Mean speed of sample ³ , S _{EM}	Adj. for lane and shoulder width, ⁴ f _{l c} (Exhibit 15-	7) 0.0 mi/h			
Total demand flow rate, both directions, v	Adj. for access points ⁴ , f_{Δ} (Exhibit 15-8)	0.3 mi/h			
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})	Free-flow speed, FFS (FSS=BFFS- f_{IS} - f_{Δ})	44.8 mi/h			
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.1 mi/h	Average travel speed, ATS _d =FFS-0.00776(v _{d AT}	$r_{e} + v_{oATS}$) - f _{ppATS} 29.1 mi/h			
	Percent free flow speed, PFFS	65.0 %			
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _{-r} (Exhibit 15-18 or 15-19)	1.1	1.1			
Passenger-car equivalents for RVs, E _p (Exhibit 15-18 or 15-19)	1.0	1.0			
Heavy-vehicle adjustment factor. $f_{i,v} = 1/(1 + P_{\tau}(E_{\tau}-1) + P_{D}(E_{D}-1))$	0.990	0.990			
Grade adjustment factor ¹ , f. proc. (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² $v/oc/h$ $v=V/(PHE*f_{}*f_{})$	946	944			
Base percent time-spent following ⁴ BPTSE (%)=100(1 $e^{av_a^b}$)	7	5.7			
Dase percent unit-spent-tollowing, brising (30) -tol(re d)	2	2.6			
Adj. ioi ho-passing zone, i _{np.PTSF} (Exhibit 15-21)					
r = cent underspendent on the product of the prod		5.0			
Level of service, LOS (Exhibit 15-3)		E			
Volume to capacity ratio, v/c	0.	55			
Capacity, C _{d,ATS} (Equation 15-12) pc/h	17	700			
Capacity, C _{d,PTSF} (Equation 15-13) pc/h	17	700			
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)	65	5.0			
Bicycle Level of Service	T				
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	93	7.0			
Effective width, Wv (Eq. 15-29) tt	24	.00			
Effective speed factor, S_t (Eq. 15-30)	3.	84			
Dicycle level of service score, BLOS (Eq. 15-31)	4.	02 E			
Notes					
 Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conterrain. If v_i(v_d or v_o) >=1,700 pc/h, terminate analysis-the LOS is F. For the analysis direction only and for v>200 veh/h. For the analysis direction only 	ditions. For the purpose of grade adjustment, specific	c downgrade segments are treated as level			
 Exhibit 15-20 provides coefficients a and b for Equation 15-10. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade 					

HCS 2010TM Version 6.50

Generated: 8/17/2015 4:38 PM

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET					
General Information	Site Information				
Analyst SAB	Highway / Direction of Travel	SR 175 Eastbound Old River to US101 e/o Tracks			
Date Performed 8/17/2015	Jurisdiction	Mendocino County			
Analysis Time Period Weekday PM Peak Hour Project Description: Hopland Main St Corridor FES	Analysis Year	Future Conditions			
Input Data					
A Shauldar width					
Lane width					
Lane width	Class I highway	Class II highway Class III highway			
t Shoulder widthtt	Terrain V Level	Rolling			
Serment length I mi	Peak-hour factor, PHF	1.00			
	No-passing zone	100%			
Analysis direction vol., V _d 213veh/h	Show North Arrow % Recreational vehicles E	2 1%			
Opposing direction vol., V _o 213veh/h	Access points <i>mi</i>	R //0 0/mi			
Lane Width ft 12.0					
Segment Length mi 0.7 Average Travel Speed					
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.5	1.5			
Passenger-car equivalents for RVs, E _n (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor $f = \frac{1}{1+P} (F -1) + P (F -1)$	0.966	0.966			
Create adjustment factor $f_{\text{transform}}$ (Twitish 15.0)	1.00	1.00			
Grade adjustment racion, r _{g,ATS} (Exhibit 13-9)	1.00	1.00			
Demand flow rate ⁻ , v _i (pc/n) v _i =v _i / (PHF ⁺ f _{g,ATS} ⁺ f _{HV,ATS})	220 Estimated Err				
	Base free flow speed ⁴ REES	50.0 mi/h			
Mean speed of sample ³ S	Adi for lane and shoulder width ⁴ f (Exhibit 15-	7) 0,0 mi/h			
Total demand flow rate, both directions, v	Adj. for access points ⁴ f. (Exhibit 15-8)	0,0 mi/h			
Free-flow speed, FFS=S _{FM} +0.00776(<i>v</i> / f _{HV,ATS})	Free-flow speed EES (ESS=BEES-ff.)	50.0 mi/h			
Adj. for no-passing zones, f _{np.ATS} (Exhibit 15-15) 3.9 mi/h	Average travel speed, ATS = $EFS_0 00776(y)$	+ y) - f 42.7 mi/h			
	Percent free flow speed, PFFS	S vo,ATS - 'np,ATS			
Percent Time-Spent-Following	Applyois Direction (d)				
Passenger-car equivalents for trucks E_(Exhibit 15-18 or 15-19)					
Passenger car equivalents for RVs \in (Exhibit 15-18 or 15-19)	10	10			
However, which a divergent factor $f_{}=1/(1+D_{-}/E_{}-1)+D_{-}/E_{}-1)$	0.003	0.003			
Heavy-venicle adjustment factor, $T_{HV} = 17 (1 + P_T(E_T - 1) + P_R(E_R - 1))$	0.993	0.993			
Grade adjustment factor', f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² , v _i (pc/h) v _i =V _i /(PHF*f _{HV,PTSF} * f _{g,PTSF})	214	214			
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d)	2	3.9			
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)	6	4.5			
Percent time-spent-following, $PTSF_{d}(\%)=BPTSF_{d}+f_{np,PTSF}*(v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$	5	6.2			
Level of Service and Other Performance Measures					
Level of service, LOS (Exhibit 15-3)		C			
Capacity C (Equation 15-12) pc/b	1	642			
Consolity, $C_{d,ATS}$ (Equation 15.12) point	1	688			
	, ,				
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Biovole Level of Service	8	5.4			
Directional demand flow rate in outside lane, v_{ex} (Eq. 15-24) veh/h	2	13.0			
Effective width, Wv (Eq. 15-29) ft	24.00				
Effective speed factor, S _f (Eq. 15-30)	4	.17			
Bicycle level of service score, BLOS (Eq. 15-31)	3	2.16			
Bicycle level of service (Exhibit 15-4)		c			
Notes					
 Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conc terrain. If v_i(v_d or v_o) >=1,700 pc/h, terminate analysis-the LOS is F. For the analysis direction only and for v>200 veh/h. For the analysis direction only 	litions. For the purpose of grade adjustment, specifi	c downgrade segments are treated as level			
 Exhibit 15-20 provides coefficients a and b for Equation 15-10. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade 	<u>.</u>				

DIRECTIONAL TWO-LANE HI	GHWAY SEGMENT WORKSHE	ET		
General Information	Site Information			
Analyst SAB Agency of Company W-Trans	Highway / Direction of Travel From/To	SR 175 Westbound Old River to US101 e/o Tracks		
Date Performed 8/17/2015	Jurisdiction	Mendocino County		
Project Description: Hopland Main St Corridor EFS	Analysis Year Future Conditions			
Input Data				
Shoulder width It Lane width It Lane width It Segment length, Li mi Analysis direction vol., V _d 213veh/h Opposing direction vol., V _o 213veh/h Shoulder width ft 6.0 Lane Width ft 0.7	Class I highway Terrain Class I highway Terrain Level Grade Length mi L Peak-hour factor, PHF No-passing zone % Trucks and Buses , P _T % Recreational vehicles, P Access points <i>mi</i>	Class II highway Class III highway Rolling Ip/down 1.00% 7 % R 1% 0/mi		
Average Travel Speed				
	Analysis Direction (d)	Opposing Direction (o)		
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.5	1.5		
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0		
Heavy-vehicle adjustment factor, $f_{HV,ATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.966	0.966		
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00		
Demand flow rate ² , v_i (pc/h) $v_i = V_i / (PHF^* f_{0.\Delta TS} * f_{HV,\Delta TS})$	220	220		
Free-Flow Speed from Field Measurement	Estimated Fre	e-Flow Speed		
	Base free-flow speed ⁴ , BFFS	50.0 mi/h		
Mean speed of sample ³ , S _{FM}	Adj. for lane and shoulder width, ⁴ f _{I S} (Exhibit 15-	7) 0.0 mi/h		
Total demand flow rate, both directions, v	Adj. for access points ⁴ , f _A (Exhibit 15-8)	0.0 mi/h		
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})	Free-flow speed, FFS (FSS=BFFS-f _{IS} -f _A)	50.0 mi/h		
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 3.9 mi/h	Average travel speed, $ATS_d = FFS - 0.00776(v_{d,ATS} + v_{o,ATS}) - f_{oo,ATS}$ 42.7 mi/h			
	Percent free flow speed, PFFS	85.4 %		
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (o)		
Passenger-car equivalents for trucks E_(Exhibit 15-18 or 15-19)	1.1	1.1		
Passenger car equivalents for $DV_{C} = (Exhibit 15.18 \text{ or } 15.10)$	10	1.7		
$E_{\text{R}}(\text{Limit for 10 of 10 of 10})$	0.002			
Heavy-venicle adjustment factor, $T_{HV} = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1))$	0.993 0.993			
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00		
Directional flow rate ² , v _i (pc/h) v _i =V _i /(PHF*f _{HV,PTSF} * f _{g,PTSF})	214	214		
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)	2	23.9		
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)	6	64.5		
Percent time-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF}*(v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$	56.2			
Level of Service and Other Performance Measures				
Level of service, LOS (Exhibit 15-3)		C		
Capacity C (Equation 15-12) nc/h	0.13			
Capacity, $C_{d,ATS}$ (Equation 15.13) pc/h	1	1042		
	1000			
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)	0	5.4		
Directional demand flow rate in outside lane, v_{ab} (Eq. 15-24) veh/h	21	13.0		
Effective width, Wv (Eq. 15-29) ft	24.00			
Effective speed factor, S, (Eq. 15-30)	4	4.17		
Bicycle level of service score, BLOS (Eq. 15-31)		3.16		
Bicycle level of service (Exhibit 15-4)	C			
Notes	-			
 Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base conterrain. If v₁(v_d or v_o) >=1,700 pc/h, terminate analysis—the LOS is F. For the analysis direction only and for v>200 veh/h. For the analysis direction only Exhibit 15-20 provides coefficients a and b for Equation 15-10. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrad. 	ditions. For the purpose of grade adjustment, specifi	c downgrade segments are treated as level		

HCS 2010TM Version 6.50

Generated: 8/17/2015 4:44 PM

Appendix I

Traffic Signal Warrant Analysis

Signal Warrant Analysis

Warrant 3: Peak-Hour Volumes and Delay

Mendocino County

US 101 & CA-175

	Major Street	Minor Street	
Street Name	US 101	CA-175	
Direction	N-S	E-W	
Number of Lanes	I	I	
Approach Speed	35	45	
Population less than 10,000?	Yes		
Date of Count:	September 25, 2014		
Scenario:	PM Future		
Warrant 3: Met when either C Condition A: Met when condition	ondition A or B is met ons A1, A2, and A3 are met		Me Not N
Condition AI The total delay experi	enced by traffic on one minor stre	et approach (one direction only)	INOT I
controlled by a STOP	sign equals or exceeds four vehicle	e-hours for a one lane approach,	
or five vehicle-hours for five vehicle-hours for for the condition A2	or a two-lane approach		Me
The volume on the sar	ne minor street approach (one dir	rection only) equals or exceeds	
100 vph for one movir Condition A3	ng lane of traffic of 150 vph for two	o moving lanes	Me
The total entering volu	ume serviced during the hour equa	lls or exceeds 800 vph for	
intersections with four	or more appraches or 650 vph fo	or intersections with three	

۱PF ŀ approaches

Condition B

The plotted point falls above the curve

1et

Met

Appendix J

Best Practices Toolbox

Appendix K

US 101 Cross Slope Details

May 22, 2015

То:	Steve Weinberger, W-Trans		
Cc:	Bill Silva, GHD		
From:	Matt Wargula, GHD	Tel:	707-523-1010
Subject:	Mendocino/US 101 Hopland "Main Street" Engineered Feasibility Study	Job no.:	8411505

This technical memorandum summarizes the work performed for Subtask 5.1c – Civil Design Evaluation pertaining to grade corrections at specific cross walk locations. Two existing cross walk locations were examined:

- the cross walks at the intersection of US 101 and Center Drive; and
- the midblock crosswalk of US 101 north of SR 175 (The US 101 cross walk south of SR 175 and at SR 175 in "Old Hopland" would be similar).

These two locations are quite different from one another. Center Drive has a noticeable elevation difference between the west side and east side of the street; whereas just north of SR 175, the roadway has the more typical "normal" crown (both sides of US101 generally match in elevation).

The tools utilized to gather information included a measuring wheel, measuring tape and a 2-foot long slope indicating level. A topographic survey was not available for this work. The measurements taken to generate "typical" cross sections should only be used for planning level analysis as it is expected that variations will occur between field measured data utilizing a slope indicating level and detailed topographic survey utilized for design (which would be gathered at a later time).

Cross-section at Center Drive

- Sizable elevation difference of approximately 3.4 feet from the west side of US101 to the east side of US101. A straight line slope across the roadway at this location would likely exceed 5%.
- Would require reconstruction of the pavement section, as it is likely that upwards of 1-foot of pavement section would need to be removed to regrade the roadway at the crosswalks.
- May require design exception from the Caltrans HDM, as a roadway slope of 4.5% in the travel lane would likely be required. It would likely be "technically infeasible" due to existing site constraints to adjust the existing pavement grade more than 6-inches due the adjacent building conforms.
- Would require reconstruction of eastern curb and gutter based on raising flow line and reducing overall cross slope. May also require storm drain modifications, either due to storm water LID requirements or to protect areas from roadway drainage.

GHD Inc.

Cross-section North of SR 175

- Would require reconstruction of the pavement section, as it is likely that more than 1-foot of pavement section would need to be removed to regrade the roadway at the crosswalk.
- It is feasible to meet Caltrans HDM requirements for the cross section.
- Would not require reconstruction of adjacent concrete curb, gutter and sidewalk, unless storm water LID requirements are needed.

Attachments

- Figure A "Typical Section at Center Drive"
- Figure B "Typical Section at ~225' North of SR 175

200
D
1

scale 1'= 10' (HOPIZONTAL) 1'= 2' (VEFTICAL)

GHD

Appendix L

Cost Estimates Technical Memorandum

August 24, 2015

Steve Weinberger, W-Trans		
Bill Silva, GHD		
Matt Wargula, GHD	Tel:	707-523-1010
Mendocino/US 101 Hopland "Main Street" Engineered Feasibility Study	Job no.:	8411505
	Steve Weinberger, W-Trans Bill Silva, GHD Matt Wargula, GHD Mendocino/US 101 Hopland "Main Street" Engineered Feasibility Study	Steve Weinberger, W-Trans Bill Silva, GHD Matt Wargula, GHD Tel: Mendocino/US 101 Hopland "Main Street" Engineered Feasibility Study

Introduction

This technical memorandum summarizes the work performed for Subtask 5.2 – Cost Estimates pertaining to development of construction cost estimates. Project development, environmental, right-of-way, permit and other costs been estimated and are discussed on page 2.

Preliminary construction costs were developed based on workshop planning documents (prepared by the W-trans Team) and discussions with the project team. Construction scope items were assumed for each design option and measurement of work quantities were approximated from available on-line tools, such as Google Earth. Topographic survey, boundary survey, geotechnical information, existing utility mapping, and other resources were not available at this stage to complete the preliminary opinion of construction cost. Based on this cursory approach, quantities of work could vary significantly, and a 35% contingency has been applied.

Caltrans District 1 was consulted in development of the construction costs and provided comments in the attached letter, dated April 29, 2015. Based on Caltrans comments received, revisions were made to the traffic control items and miscellaneous utility adjustment items. There seems to be potential for underground and/or above ground utility adjustments on this project. It is not known which underground utilities would be impacted or the exact extent of the work. Existing above ground utilities impacted are anticipated to include electrical and communications lines.

Preliminary Opinion of Probable Construction Cost

Preliminary opinion of probable construction costs were developed for project design options. This cost is based on a Class 4 (concept evaluation) estimate of probable construction cost as defined by the Association for the Advancement of Cost Engineering, International (AACE). AACE defines the "Class 4" estimate as follows:

Generally prepared based on limited information and subsequently have fairly wide accuracy ranges. They are typically used for project screening, determination of feasibility, concept evaluation, and preliminary budget approval. Typically, engineering is from 1% to 15% complete. Class 4 estimates are prepared for a number of purposes, such as but not limited to, detailed strategic planning, business development, project screening at more developed stages, alternative scheme analysis, confirmation of economic and/or technical feasibility, and preliminary budget approval or approval to proceed to the next stage. The typical accuracy range for this class estimate are -15% to -30% on the low side, and +20% to +50% on the high side, depending on the technical complexity of the project, appropriate reference information, and the inclusion of an appropriate contingency determination.

Note: Contingency (set at 35-percent) is not directly related to the stated accuracy range for a Class 4 estimate. Determination of construction cost contingency is intended to cover unforeseen aspects of construction, including changes in quantities of work, which have not been evaluated during this preliminary investigation.

The preliminary opinion of probable construction costs for design options are as follows:

- A. \$2,467,000 (Roundabout)
- B. \$419,000 (Relocated x-walk)C. \$161,000 (Colorized shoulders)
- D. \$242,000 (Entry features)
- E. \$459,000 (Sidewalk reconstruction)
- F. \$385,000 (New southbound left-turn lane)
- G. \$284,000 (Additional speed medians)
- H. \$1,089,000 (Bike lanes on SR 175)
- I. \$1,275,000 (US 101/SR 175 alternative)

The total probable construction cost of all projects is \$6,781,000.

Preliminary Opinion of Probable Project Delivery Cost and Total Project Cost

Project delivery costs include preliminary engineering (PE), right-of-way (RW) and construction engineering (CE). PE includes environmental studies and permits (PA&ED), design and development of plans, specifications and estimates (PS&E) for construction. RW includes right-of-way engineering (research, boundary survey, legal descriptions, plat maps, etc.), acquisitions and utilities. CE includes construction engineering, management and inspection.

Project delivery costs for PE and CE were estimated based on the maximum percentages of the construction cost typically allowed for those phases of work (PE at 25 percent maximum and CE at 15% maximum). RW costs will vary considerably based on the need and type of acquisition required, utility relocation or other activity. Where the proposed project is contained within the existing back of sidewalk limits or edge of pavement, a minimal RW cost is assumed as existing sidewalks and pavement shoulders are assumed to be within the public right-of-way. The approach to establish RW costs included the approximate number of private parcels adjacent to each project and assumptions about the potential for RW acquisition provided with the intent of the project, including permit to enter and construct, temporary construction easement and permanent (purchase) of property.

The following Table 1 shows planning level project delivery costs and total probable cost of the projects, including construction.

			-									
		TOTAL PROJECT COST	\$ 3,603,800	\$ 611,600	\$ 250,400	\$ 398,800	\$ 667,600	\$ 599,000	\$ 397,600	\$ 1,874,600	\$ 1,810,000	\$ 10,213,400
	OST	CONSTRUCTION ENGINEERING (CE) (15%)	\$ 370,050.00	\$ 62,850.00	\$ 24,150.00	\$ 36,300.00	\$ 68,850.00	\$ 57,750.00	\$ 42,600.00	\$ 163,350.00	\$ 191,250.00	\$ 1,017,150.00
	JECT DELIVERY C	RIGHT OF WAY (RW) (Est.**)	\$ 150,000.00	\$ 25,000.00	\$ 25,000.00	\$ 60,000.00	\$ 25,000.00	\$ 60,000.00		\$ 350,000.00	\$ 25,000.00	\$ 720,000.00
ı	PRC	PRELIMINARY ENGINEERING (PE) (25%)	\$ 616,750.00 \$	\$ 104,750.00 \$	\$ 40,250.00 \$	\$ 60,500.00 \$	\$ 114,750.00 \$	\$ 96,250.00 \$	\$ 71,000.00	\$ 272,250.00	\$ 318,750.00	\$ 1,695,250.00
	TOTAL	CONSRUCTION COST (W/ CONT.*)	\$ 2,467,000	\$ 419,000	\$ 161,000	\$ 242,000	\$ 459,000	\$ 385,000	\$ 284,000	\$ 1,089,000	\$ 1,275,000	\$ 6,781,000
		PROJECT DESCRIPTION	A. ROUNDABOUT AT US 101 / SR 175	B. RELOCATED US 101/CENTER DRIVE CROSSWALK	C. COLORIZED SHOULDERS IN OLD	D. ENTRY FEATURES / MEDIAN & TREE	E. SIDEWALK RECONSTRUCTION IN HIGH PEDESTRIAN AREAS	F. NEW SOUTHBOUND LEFT-TURN LANES	G. ADDITIONAL SPEED REDUCTION MEDIANS ON US 101, NORTH/SOUTH OF MOUTAIN HOUSE	H. BIKE LANES ON SR 175 BETWEEN US 101 AND SR 175 ROUNDABOUT	I. US 101 / SR 175 INTERSECTION ALTERNATIVE (REDUCED INTERSECTION SIZE)	TOTAL PROJECT COST

Table 1: Mendocino/US 101 Hopland "Main Street" Engineered Feasibility Study Planning Level Project Delivery Cost and Total Projects

Note: *Construction cost based on Class 4 opinion of probable construction costs. **\$25,000 assumed minimum RW cost where potential for RW exists.

Attachments

- Engineer's Opinion of Probable Construction Costs.Caltrans Response to Comments Letter, dated April 29, 2015.

Engineer's Opinion of Probable Construction Costs

Mendocino Council of Governments Mendocino/US 101 Hopland "Main Street" Engineered Feasibility Study

Alternative Comparison Construction Cost Estimates August 24, 2015 ENR Cost Index April 2015 (San Francisco, CA): 11,162.57

BID ITEM	ITEM CODE		QUANTITY		UNIT PRICE	Total
1	070030	A. ROUNDABOUT AT US 10	1/SR 175	LS	\$ 1.500.00	\$ 1,500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 8,000.00	\$ 8,000
3	120100	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 100,000.00	\$ 100,000
4	120149	TEMPORARY PAVEMENT MARKING (PAINT)	250	SF	\$ 3.00	\$ 750
6	120159	FLASHING BEACON (PORTABLE)	2,500	FA	\$ 500.00	\$ 2,500
7	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1	LS	\$ 20,000.00	\$ 20,000
8	026322	PORTABLE LIGHTING SYSTEMS	1	LS	\$ 10,000.00	\$ 10,000
9	129000	TEMPORARY RAILING (TYPE K)	2,000	LF	\$ 10.00	\$ 20,000
10	026323	IOR SITE MANAGEMENT	2	LS	\$ 3,000.00 \$ 3,000.00	\$ 6,000
12	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 18,000.00	\$ 18,000
13	1507XX	REMOVE THERMO/PAINTED TRAFFIC STRIPE/MARKERS	1	LS	\$ 14,000.00	\$ 14,000
14	150742	REMOVE ROADSIDE SIGN	10	EA	\$ 75.00	\$ 750
15	152299		2	EA	\$ 35.00	\$ 70
17	152320	RELOCATE ROADSIDE SIGN	2	EA	\$ 195.00	\$ 500
18	152XXX	MISCELANEOUS UTILITY ADJUSTMENTS	1	LS	\$ 75,000.00	\$ 75,000
19	152439	ADJUST FRAME AND COVER TO GRADE	20	EA	\$ 675.00	\$ 13,500
20	152440	ADJUST MANHOLE TO GRADE	10	EA	\$ 875.00	\$ 8,750
21	153103	CUED PLANE ASPHALT CONCRETE PAVEMENT	5,000	51	\$ 3.50 \$ 10.000.00	\$ 17,500
23	153123	REMOVE CONCRETE	10.000	SF	\$ 8.50	\$ 85.000
24	190101	ROADWAY EXCAVATION	3,000	CY	\$ 30.00	\$ 90,000
25	208XXX	IRRIGATION AND PLANTING	1	LS	\$ 85,000.00	\$ 85,000
26	204099	PLANT ESTABLISHMENT WORK	1 745	LS	\$ 10,000.00	\$ 10,000
21	200203	HOT MIX ASPHALT (TYPE A)	1,745	TON	φ 45.00 \$ 110.00	φ / 8,525 \$ 165.000
29	394076	PLACE HOT MIX ASPHALT DIKE (TYPE E)	476	LF	\$ 7.50	\$ 3,570
30	394090	PLACE HOT MIX ASPHALT (MISCELLANEOUS AREA)	700	SF	\$ 15.00	\$ 10,500
31	397005		1	TON	\$ 2,500.00	\$ 2,500
32	401050 56XXXX		213		\$ 355.00 \$ 50.000.00	\$ 75,615
34	566011	ROADSIDE SIGN - ONE POST	25	EA	\$ 500.00	\$ 12,500
35	566012	ROADSIDE SIGN - TWO POST	1	EA	\$ 750.00	\$ 750
36	7XXXX	STORM DRAIN MODIFICATIONS	1	LS	\$ 150,000.00	\$ 150,000
37	730020	MINOR CONCRETE (CURB AND GUTTER)	1,536		\$ 52.00 \$ 27.00	\$ 79,872
39	731511	MINOR CONCRETE (ISI AND PAVING)	6 907	SE	\$ 27.00 \$ 15.00	\$ 2,430 \$ 103.605
40	731521	MINOR CONCRETE (DRIVEWAY)	1,770	SF	\$ 15.00	\$ 26,550
41	731521	MINOR CONCRETE (SIDEWALK)	8,717	SF	\$ 12.00	\$ 104,604
42	731623	MINOR CONCRETE (CURB RAMP)	6	EA	\$ 5,500.00	\$ 33,000
43	750001 820107	DELINEATOR (CLASS 1)	3,000	LB FA	\$ 1.00	\$ 3,000
45	820130	OBJECT MARKER	10	EA	\$ 100.00	\$ 1,000
46	840515	THERMOPLASTIC PAVEMENT MARKING	1,500	SF	\$ 5.50	\$ 8,250
47	840560	THERMOPLASTIC TRAFFIC STRIPE	12,000	LF	\$ 0.40	\$ 4,800
48	850111		550	EA LS	\$ 7.00 \$ 100.000.00	\$ 3,850
50	860415	LIGHTING (STAGE CONSTRUCTION)	1	LS	\$ 20,000.00	\$ 20,000
51	026328	SOLAR FLASHING BEACON SYSTEM	1	LS	\$ 20,000.00	\$ 20,000
52	999990	MOBILIZATION	1	LS	\$ 164,564.00	\$ 164,564
				A. ROUNDAE	35% CONTINGENCY	\$ 1,827,000 \$ 639,450
				A. ROUN	DABOUT TOTAL (ROUNDED)	\$ 2.467.000
		B. RELOCATED US101/CENTER DRIVE CROSSWALK WIT	H CURB EX	TENSIONS A	ND REGRADE	
1	070030	LEAD COMPLIANCE PLAN	1	LS	\$ 1,500.00	\$ 1,500
2	120090	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 8,000.00 \$ 12,000.00	\$ 8,000 \$ 12,000
4	120159	TEMPORARY TRAFFIC STRIPE (PAINT)	300	LF	\$ 1.00	\$ 300
5	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1	LS	\$ 2,500.00	\$ 2,500
6	130100		1	LS	\$ 500.00	\$ 500
7	130300-130900 1507XX	STOKM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 1,500.00 \$ 1,500.00	\$ 1,500 \$ 1,500
9	150742	REMOVE ROADSIDE SIGN	2	EA	\$ 75.00	\$ 150
10	152390	RELOCATE ROADSIDE SIGN	2	EA	\$ 350.00	\$ 700
11	152XXX	MISCELANEOUS UTILITY ADJUSTMENTS	1	LS	\$ 50,000.00	\$ 50,000
12	152439	ADJUST FRAME AND COVER TO GRADE	8	EA	\$ 675.00	\$ 5,400
13	152440	COLD PLANE ASPHALT CONCRETE PAVEMENT	1.000	SY	\$ 075.00 \$ 3.50	\$ 1,750
15	153123	REMOVE CONCRETE	3,000	SF	\$ 8.50	\$ 25,500
16	190101	ROADWAY EXCAVATION	500	CY	\$ 30.00	\$ 15,000
17	260203	CLASS 2 AGGREGATE BASE (CY)	308	CY	\$ 45.00	\$ 13,867
18	390132	HUT MIX ASPHALT (TYPE A) TACK COAT	322	TON	\$ 150.00 \$ 2.500.00	\$ 48,360 \$ 1.250
20	566011	ROADSIDE SIGN - ONE POST	2	EA	\$ 500.00	\$ 1,000
21	730020	MINOR CONCRETE (CURB AND GUTTER)	240	LF	\$ 52.00	\$ 12,480
22	730070	DETECTABLE WARNING SURFACE	60	SF	\$ 27.00	\$ 1,620
23	731521	MINOR CONCRETE (SIDEWALK)	1,600	SF	\$ 12.00	\$ 19,200
24	840515		8 640	SF	\$ 5,500.00	
26	840560	THERMOPLASTIC TRAFFIC STRIPE	780	LF	\$ 0.40	\$ 312
27	850111	PAVEMENT MARKER (RETROREFLECTIVE)	100	EA	\$ 7.00	\$ 700
28	999990	MOBILIZATION	1	LS	\$ 33,133.00	\$ 33,133
			B. REL	UCATED X-V	35% CONTINCENCY	\$ 310,000 \$ 109,500
			В.	RELOCATED	X-WALK TOTAL (ROUNDED)	\$ 419,000

BID ITEM	ITEM CODE		QUA	NTITY	UNIT PRICE	Total
1	070030	C. COLORIZED SHOULDERS IN C	DLD HOPLAN		\$ 1,500,00	\$ 1.500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 700.00	\$ 700
3	120000	TRAFFIC CONTROL SYSTEMS	1	1.5	\$ 2,500,00	\$ 2,500
4	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1	LS	\$ 2,500.00	\$ 2,500
5	130100	JOB SITE MANAGEMENT	1	LS	\$ 500.00	\$ 500
6	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 1,500.00	\$ 1,500
7	153103	COLD PLANE ASPHALT CONCRETE PAVEMENT	978	SY	\$ 3.50	\$ 3,422
8	390132	HOT MIX ASPHALT (TYPE A) (STAMPED)	116	TON	\$ 200.00	\$ 23,188
9	840515	COLORIZED SHOULDER	8,800	SF	\$ 7.50	\$ 66,000
10	840560		2,200		\$ 0.40	\$ 880
11	999990	MOBILIZATION				\$ 15,404
			C. COLORI	ZED SHOULL	35% CONTINGENCY	\$ 119,000
			C. COL	ORIZED SHO	ULDERS TOTAL (ROUNDED)	\$ 161,000
		D. ENTRY FEATURES / MEDIAN & TR	REE LINED E	NTRY		+,
1	070030	LEAD COMPLIANCE PLAN	1	LS	\$ 1,500.00	\$ 1,500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 4,500.00	\$ 4,500
3	120100	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 15,000.00	\$ 15,000
4	120149	TEMPORARY PAVEMENT MARKING (PAINT)	100	SF	\$ 3.00	\$ 300
5	120155	PORTABLE CHANGEARI E MESSAGE SIGN	420		\$ 3,500,00	\$ 3,500
7	130100	JOB SITE MANAGEMENT	1	1.5	\$ 1,500,00	\$ 1,500
8	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 7,000.00	\$ 7,000
9	1507XX	REMOVE THERMO/PAINTED TRAFFIC STRIPE/MARKERS	1	LS	\$ 3,000.00	\$ 3,000
10	160102	CLEARING AND GRUBBING	1	LS	\$ 2,000.00	\$ 2,000
11	153123	REMOVE CONCRETE	200	SF	\$ 8.50	\$ 1,700
12	190101	ROADWAY EXCAVATION	500	CY	\$ 30.00	\$ 15,000
13	208XXX		1	LS	\$ 45,000.00	\$ 45,000
14	204099		1	LS E^	ə 10,000.00	→ 10,000
15	566012	ROADSIDE SIGN - UNE FUST	2	EA EA	φ 500.00 \$ 5.500.00	9 1,000 \$ 16,500
17	730020	MINOR CONCRETE (CURB AND GUTTER)	144	LF	\$ 52.00	\$ 7 488
18	731511	MINOR CONCRETE (STAMPED CONCRETE)	720	SF	\$ 20.00	\$ 14.400
19	840515	THERMOPLASTIC PAVEMENT MARKING	1,500	SF	\$ 5.50	\$ 8,250
20	840560	THERMOPLASTIC TRAFFIC STRIPE	1,000	LF	\$ 0.40	\$ 400
21	850111	PAVEMENT MARKER (RETROREFLECTIVE)	100	EA	\$ 7.00	\$ 700
22	999990	MOBILIZATION	1	LS	\$ 19,099.00	\$ 19,099
			D. E	NTRY FEATU	JRES SUBTOTAL (ROUNDED)	\$ 179,000
					35% CONTINGENCY	\$ 62,650
				D. ENIRT FE	ATURES TOTAL (ROUNDED)	\$ 242,000
1	070030	LEAD COMPLIANCE PLAN	1		\$ 1,500,00	\$ 1.500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 4,000.00	\$ 4,000
3	120100	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 7,000.00	\$ 7,000
4	130100	JOB SITE MANAGEMENT	1	LS	\$ 500.00	\$ 500
5	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 1,500.00	\$ 1,500
6	150742	REMOVE ROADSIDE SIGN	5	EA	\$ 75.00	\$ 375
7	152390	RELOCATE ROADSIDE SIGN	5	EA	\$ 350.00	\$ 1,750
8	152888		5 200	LS	\$ 25,000.00	\$ 25,000
10	190101		500	CY	\$ 30.00	\$ 15,000
10	260203	CLASS 2 AGGREGATE BASE (CY)	87	CY	\$ 45.00	\$ 3.933
12	390132	HOT MIX ASPHALT (TYPE A)	78	TON	\$ 150.00	\$ 11,625
13	397005	TACK COAT	1	TON	\$ 2,500.00	\$ 1,250
14	566011	ROADSIDE SIGN - ONE POST	5	EA	\$ 500.00	\$ 2,500
15	730020	MINOR CONCRETE (CURB AND GUTTER)	1,000	LF	\$ 52.00	\$ 52,000
16	731521	MINOR CONCRETE (DRIVEWAY)	880	SF	\$ 15.00	\$ 13,200
1/	731521	MINOR CONCRETE (SIDEWALK)	8,000	SF	\$ 12.00	\$ 96,000
10	000000		4	LS	\$ 5,500.00 \$ 36,400.00	\$ 22,000 \$ 36,400
15	333330	F S		CONSTRUC	TION SUBTOTAL (ROUNDED)	\$ 340,000
					35% CONTINGENCY	\$ 119,000
			E.	RELOCATED	X-WALK TOTAL (ROUNDED)	\$ 459,000
		F. NEW SOUTHBOUND LEFT-TURN LANES ON	US 101 INT(0 REAL GOO	DS	
1	070030	LEAD COMPLIANCE PLAN	1	LS	\$ 1,500.00	\$ 1,500
2	120090	TRAFFIC CONTROL SYSTEMS	1	19	φ 3,000.00 \$ 15,000.00	y 3,000 \$ 15,000
4	120159	TEMPORARY TRAFFIC STRIPE (PAINT)	1 000	LF	\$ 10,000.00	\$ 1,000
5	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1,000	LS	\$ 5.000.00	\$ 5.000
6	129000	TEMPORARY RAILING (TYPE K)	500	LF	\$ 10.00	\$ 5,000
7	026323	TEMPORARY ALTERNATIVE CRASH CUSHION SYSTEM	2	EA	\$ 3,000.00	\$ 6,000
8	130100	JOB SITE MANAGEMENT	1	LS	\$ 1,500.00	\$ 1,500
9	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 8,000.00	\$ 8,000
10	150661		100		\$ 14.00	\$ 1,400
11	1507XX		1	LS	\$ 1,500.00	\$ 1,500
12	152444	COLD PLANE ASPHALT CONCRETE PAVEMENT	1 000	LO SY	y ∠0,000.00 \$3.50	y ∠5,000 \$ 3,500
14	160102	CLEARING AND GRUBBING	1,000	LS	\$ 8.000.00	\$ 8.000
15	190101	ROADWAY EXCAVATION	350	CY	\$ 30.00	\$ 10,500
16	208XXX	IRRIGATION AND PLANTING	1	LS	\$ 10,000.00	\$ 10,000
17	204099	PLANT ESTABLISHMENT WORK	1	LS	\$ 5,000.00	\$ 5,000
18	260203	CLASS 2 AGGREGATE BASE (CY)	1,130	CY	\$ 45.00	\$ 50,833
19	390132	HOT MIX ASPHALT (TYPE A)	478	TON	\$ 150.00	\$ 71,625
20	394077	HUT MIX ASPHALT DIKE (TYPE F)	100	LF	\$ 45.00	\$ 4,500
21	820107		1		ψ 2,500.00 \$ 20.00	ψ ∠,500 \$ 220
22	832001	METAL BEAM GUARD RAILING	4	LA IF	y 00.00 \$ 25.00	y 320 \$ 2.5∩∩
24	839565	TERMINAL SYSTEM (TYPE SRT)	2	EA	\$ 3.800.00	\$ 7.600
25	840515	THERMOPLASTIC PAVEMENT MARKING	200	SF	\$ 5.50	\$ 1,100
26	840560	THERMOPLASTIC TRAFFIC STRIPE	1,000	LF	\$ 1.75	\$ 1,750
27	850111	PAVEMENT MARKER (RETROREFLECTIVE)	75	EA	\$ 7.00	\$ 525
28	999990	MOBILIZATION	1	LS	\$ 30,498.00	\$ 30,498
			F. SOUTHBO	JUND LEFT T	UKN SUBICIAL (ROUNDED)	\$ 285,000
			E COLIT			φ <u>99,750</u>
			r. 3001	11DOUND LE	I I I UKNI I UTAL (KUUNDED)	φ <u>385,000</u>

BID ITEM	ITEM CODE		QUA	NTITY	UNIT PRICE	Total
		G. ADDITIONAL SPEED REDUCTION MEDIANS ON US 101	I, NORTH/SC	OUTH OF MO	UTAIN HOUSE	
1	070030	LEAD COMPLIANCE PLAN	1	LS	\$ 1,500.00	\$ 1,500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 4,500.00	\$ 4,500
3	120100	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 12,000.00	\$ 12,000
4	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1	LS	\$ 3,500.00	\$ 3,500
5	130100	JOB SITE MANAGEMENT	1	LS	\$ 1,500.00	\$ 1,500
6	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 1,500.00	\$ 1,500
7	1507XX	REMOVE THERMO/PAINTED TRAFFIC STRIPE/MARKERS	1	LS	\$ 3,000.00	\$ 3,000
8	153123	REMOVE CONCRETE/HMA PAVING	4,000	SF	\$ 8.50	\$ 34,000
9	208XXX	IRRIGATION AND PLANTING	1	LS	\$ 10,000.00	\$ 10,000
10	204099	PLANT ESTABLISHMENT WORK	1	LS	\$ 5,000.00	\$ 5,000
11	566011	ROADSIDE SIGN - ONE POST	10	EA	\$ 500.00	\$ 5,000
12	730020	MINOR CONCRETE (CURB AND GUTTER)	500	LF	\$ 52.00	\$ 26,000
13	731511	MINOR CONCRETE (STAMPED CONCRETE)	4,000	SF	\$ 20.00	\$ 80,000
14	999990	MOBILIZATION	1	LS	\$ 22,500.00	\$ 22,500
		G.:	SPEED REDI	JCTION MED	IANS SUBTOTAL (ROUNDED)	\$ 210,000
					35% CONTINGENCY	\$ 73,500
			G. SPEED F	REDUCTION I	MEDIANS TOTAL (ROUNDED)	\$ 284,000
		H. BIKE LANES ON SR 175 BETWEEN US 101	AND SR 175	ROUNDABO	UT	
1	070030	LEAD COMPLIANCE PLAN	1	LS	\$ 1,500.00	\$ 1,500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 5,000.00	\$ 5,000
3	120100	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 15,000.00	\$ 15,000
4	120159	TEMPORARY TRAFFIC STRIPE (PAINT)	1,000	LF	\$ 1.00	\$ 1,000
5	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1	LS	\$ 5,000.00	\$ 5,000
6	129000	TEMPORARY RAILING (TYPE K)	5,000	LF	\$ 10.00	\$ 50,000
7	026323	TEMPORARY ALTERNATIVE CRASH CUSHION SYSTEM	6	EA	\$ 3,000.00	\$ 18,000
8	130100	JOB SITE MANAGEMENT	1	LS	\$ 5,000.00	\$ 5,000
9	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 15,000.00	\$ 15,000
10	1507XX	REMOVE THERMO/PAINTED TRAFFIC STRIPE/MARKERS	1	LS	\$ 15,000.00	\$ 15,000
11	152XXX	MISCELANEOUS UTILITY ADJUSTMENTS	1	LS	\$ 50,000.00	\$ 50,000
12	153103	COLD PLANE ASPHALT CONCRETE PAVEMENT	7,511	SY	\$ 3.50	\$ 26,289
13	160102	CLEARING AND GRUBBING	1	LS	\$ 25,000.00	\$ 25,000
14	190101	ROADWAY EXCAVATION	1,156	CY	\$ 35.00	\$ 40,444
15	208XXX	IRRIGATION AND PLANTING	1	LS	\$ 40,000.00	\$ 40,000
16	204099	PLANT ESTABLISHMENT WORK	1	LS	\$ 10,000.00	\$ 10,000
17	260203	CLASS 2 AGGREGATE BASE (CY)	770	CY	\$ 45.00	\$ 34,667
18	390132	HOT MIX ASPHALT (TYPE A)	1,612	TON	\$ 150.00	\$ 241,800
19	397005	TACK COAT	1	TON	\$ 2,500.00	\$ 2,500
20	566011	ROADSIDE SIGN - ONE POST	15	EA	\$ 500.00	\$ 7,500
21	840515	THERMOPLASTIC PAVEMENT MARKING	1,500	SF	\$ 5.50	\$ 8,250
22	840560	THERMOPLASTIC TRAFFIC STRIPE	20,000	LF	\$ 1.75	\$ 35,000
23	86XXXX	PEDESTRIAN/BICYCLE ACTIVATED BEACON	1	LS	\$ 75,000.00	\$ 75,000
24	999990	MOBILIZATION	1	LS	\$ 78,234.00	\$ 78,234
				H. BIKE LA	ANES SUBTOTAL (ROUNDED)	\$ 806,000
					35% CONTINGENCY	\$ 282,100
				H. BIK	E LANES TOTAL (ROUNDED)	\$ 1,089,000
		I. US 101 / SR 175 INTERSECTION ALTERNATIVE (REDUCED IN	ITERSECTIO	N SIZE)	
1	070030	LEAD COMPLIANCE PLAN	1	LS	\$ 1,500.00	\$ 1,500
2	120090	CONSTRUCTION AREA SIGNS	1	LS	\$ 8,000.00	\$ 8,000
3	120100	TRAFFIC CONTROL SYSTEMS	1	LS	\$ 25,000.00	\$ 25,000
4	120149	TEMPORARY PAVEMENT MARKING (PAINT)	250	SF	\$ 3.00	\$ 750
5	120159	TEMPORARY TRAFFIC STRIPE (PAINT)	2,500	LF	\$ 1.00	\$ 2,500
6	128652	PORTABLE CHANGEABLE MESSAGE SIGN	1	LS	\$ 8,000.00	\$ 8,000
7	130100	JOB SITE MANAGEMENT	1	LS	\$ 3,500.00	\$ 3,500
8	130300-130900	STORM WATER POLLUTION PREVENTION CONTROL	1	LS	\$ 12,000.00	\$ 12,000
9	1507XX	REMOVE THERMO/PAINTED TRAFFIC STRIPE/MARKERS	1	LS	\$ 7,000.00	\$ 7,000
10	152320	RESET ROADSIDE SIGN	2	EA	\$ 195.00	\$ 390
11	152390	RELOCATE ROADSIDE SIGN	2	EA	\$ 250.00	\$ 500
12	152XXX	MISCELANEOUS UTILITY ADJUSTMENTS	1	LS	\$ 50,000.00	\$ 50,000
13	152439	ADJUST FRAME AND COVER TO GRADE	20	EA	\$ 675.00	\$ 13,500
14	152440	ADJUST MANHOLE TO GRADE	10	EA	\$ 875.00	\$ 8,750
15	153103	COLD PLANE ASPHALT CONCRETE PAVEMENT	2,273	SY	\$ 3.50	\$ 7,957
16	153123	REMOVE CONCRETE/HMA PAVING	17,600	SF	\$ 8.50	\$ 149,600
17	190101	ROADWAY EXCAVATION	978	CY	\$ 30.00	\$ 29,333
18	260203	CLASS 2 AGGREGATE BASE (CY)	652	CY	\$ 45.00	\$ 29,333
19	390132	HOT MIX ASPHALT (TYPE A)	1,431	TON	\$ 115.00	\$ 164,584
20	397005	TACK COAT	1	TON	\$ 2,500.00	\$ 2,500
21	566011	ROADSIDE SIGN - ONE POST	10	EA	\$ 500.00	\$ 5,000
22	566012	RUADSIDE SIGN - TWO POST	1	EA	\$ 750.00	\$ 750
23	730020	MINOR CONCRETE (CURB AND GUTTER)	1,098	LF	\$ 52.00	\$ 57,096
24	731511	MINOR CONCRETE (STAMPED CONCRETE)	2,715	SF	\$ 20.00	\$ 54,300
25	731521	MINOR CONCRETE (DRIVEWAY)	1,770	SF	\$ 15.00	\$ 26,550
26	731521	MINOR CONCRETE (SIDEWALK)	9,440	SF	\$ 12.00	\$ 113,280
27	731623	MINOR CONCRETE (CURB RAMP)	8	EA	\$ 5,500.00	\$ 44,000
28	840515	THERMOPLASTIC PAVEMENT MARKING	1,600	SF	\$ 5.50	\$ 8,800
29	840560	THERMOPLASTIC TRAFFIC STRIPE	10,000	LF	\$ 0.40	\$ 4,000
30	850111	PAVEMENT MARKER (RETROREFLECTIVE)	550	EA	\$ 7.00	\$ 3,850
31	999990	MOBILIZATION	1	LS	\$ 101,079.00	\$ 101,079
		I. US 10'	1 / SR 175 IN	TERSECTION	ALT SUBTOTAL (ROUNDED)	\$ 944,000
					35% CONTINGENCY	\$ 330,400
		I. US 101	/ SR 175 INT	ERSECTION	ALT SUBTOTAL (ROUNDED)	\$ 1,275,000

	TOT	AL PROJECT	LIST SUBTOTAL (ROUNDED)	\$ 5,020,000
			35% CONTINGENCY	\$ 1,757,000
	Т	OTAL PROJ	ECT LIST TOTAL (ROUNDED)	\$ 6,781,000

DEPARTMENT OF TRANSPORTATION

DISTRICT 1, P. O. BOX 3700 EUREKA, CA 95502-3700 PHONE (707) 441-4540 FAX (707) 441-5869 TTY 711

Serious drought. Help Save Water!

April 29, 2015

Steve Weinberger Principal W-Trans, Inc. 490 Mendocino Ave., Suite 201 Santa Rosa, CA 95401 Hopland EFS US 101/SR 175 SPR 13/14

Dear Mr. Weinberger,

Thank you for the opportunity to comment on the draft *Engineer's Opinion of Probable Construction Costs* (April 7, 2015, GHD). The draft spreadsheet is a component of the "Mendocino/US 101 Hopland Main Street Engineered Feasibility Study" planning document. The Hopland EFS will be the product of a 2013/14 State Planning and Research (SPR) grant. The project area covers both US 101 through the community of Hopland and SR 175 through Old Hopland. The plan identifies several proposed treatments which have been vetted through the community outreach process. Here is a list of those proposed treatments and their associated costs in draft form.

Please consider the following comments as the draft spreadsheet moves forward:

- The estimate for *Traffic Control Systems* for the proposed roundabout at US 101/SR 175 is low (Item Code #120100). As a comparison, the traffic control for the constructed Old Hopland roundabout on SR 175 was \$75,042.00 in 2008. Also, Caltrans typically requires two portable changeable message signs (Item Code #128652) as well as two portable lighting systems (Item Code #026322) during traffic control.
- The *Irrigation and Planting* and *Plant Establishment* Work line items may need to be reconsidered unless the project intends to establish a maintenance agreement with Mendocino County. In response to Governor Brown's mandatory water reduction press release, Caltrans has issued a statewide news release in April 2015 detailing the Department's effort to reduce water usage, which includes dramatic changes to its current and future irrigation practices.
- Have potential utility replacement areas been identified in the plan? Is this accounted for in the *Sidewalk Reconstruction in High Pedestrian Areas* section? Will the utility companies do the *Miscellaneous Utility Adjustments* themselves (\$50,000)?

If you have any questions regarding the comments outlined in this letter or need further

Steve Weinberger 4/29/2015 Page 2

assistance, please contact me at (707) 441-4540 or tatiana.ahlstrand@dot.ca.gov.

Sincerely,

Um aumun

Tatiana Ahlstrand Associate Transportation Planner District 1 Office of Community Planning

cc: Matt Wargula, GHD

Appendix M

Environmental Review

Memorandum

June 26, 2015

То	Steve Weinberger, PE, PTOE Principal Whitlock & Weinberger Transportation, Inc. (W-Trans)			
From	Katherine Ross Kristine Gaspar GHD Inc.	Tel	(707) 523-1010	
Subject	Hopland Main Street Corridor Project – DRAFT Environ	mental	Analysis	

Summary

The purpose of this memorandum is to provide preliminary environmental existing conditions and potential impacts related to various environmental resources identified under the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA) for the Hopland Main Street Corridor project (Plan). As identified in further detail below, there could be environmental impacts associated with the following resource sections: Historical/Cultural/Paleontological Resources; Hydrology and Floodplains; Water Quality and Stormwater Runoff; Geology and Soils; Hazardous Waste/Materials; Air Quality and Climate Change; Noise and Vibration; and Biological Resources.

Project Understanding

GHD's understanding of the project is based on the *Hopland Main Street Corridor Engineered Feasibility Study* (W-Trans 2015). The purpose of the plan is to provide a set of transportation improvements that are feasible and meet the needs of a complete street environment. Included in the plan are segments of US 101 and SR 175 in Central Hopland and Old Hopland, respectively (shown in Figure 1 of the Feasibility Study). The objective of the Plan is to improve safety, enhance beauty, increase sense of community and neighborhood health, maintain historic town character, and provide more opportunities and connection to recreation. The Plan does not include improvements that would increase capacity of the transportation network. In general, the proposed Plan improvements include modifications to the existing infrastructure such as reconfiguring streets, crosswalks, sidewalks, and curbs, and installation of street furniture, lighting, and landscaping. The only new infrastructure identified in the plan would be a multi-use trail along the NCRA rail line and three bicycle/pedestrian bridges over the Russian River and Dooley Creek. Some of the proposed improvements have identified alternatives. The following analysis considers the plan's proposed improvements and alternatives.

Preliminary Analysis of CEQA/NEPA Issues

Land Use

The project is located within the unincorporated area of Hopland in Mendocino County. The study area is surrounded by various land uses including residential, commercial, and agricultural (Mendocino County 2015). The proposed plan includes improvements to the existing transportation infrastructure, and some additions to the transportation network. It does not involve any changes to land use.

Due to the nature of the project, it would not permanently divide an established community. It is anticipated that the project would be consistent with the applicable land use plans, policies, and/or regulations that govern the study area.

Visual/Aesthetics

The study area is generally flat and located near urban, residential, and agricultural land uses. The Mendocino County General Plan does not designate any scenic vistas in the vicinity of the study area (Mendocino County 2009) and there are no officially designated state scenic highways in Mendocino County (Caltrans 2015).

The project would consist of at-grade and subsurface improvements to existing infrastructure, with the exception of the lighting enhancements and the pedestrian bridges. It would not include the construction of new structures that would obstruct existing vistas or damage scenic resources or the visual character of the area. In fact, one of the objectives is to enhance the beauty of the plan area, including planting new trees, landscaping, and street furniture. Implementation of the pedestrian bridges would be adjacent to the existing vehicular bridges, and is anticipated to be within scale and context of the existing character of the area.

Lighting along US 101 is proposed as part of the project, which would create a new source of light and/or glare in the area. Therefore, appropriate design measures should be considered to minimize lighting and glare impacts.

Historic/Cultural Resources/Paleontological Resources

Existing Conditions

The study area contains one recorded archaeological resource: the ethnographic village of *Cane'l* (*Shanel, Se-nel,* or *Sane'l*), also known as P-23-000800 (CA-MEN-865/H). In addition, the State Office of Historic Preservation Historic Property Directory (OHP HPD) (which includes listings of the California Register of Historical Resources, California State Historical Landmarks, California State Points of Historical Interest, and the National Register of Historic Places) lists one recorded building adjacent to the project site: 13401 SR 101, the Thatcher Hotel (Tax Certification No. 537.9-23-0002). This building has been determined eligible for listing on the National Register of Historic Places and listed on the California Register of Historical Resources. The Caltrans Bridge Inventory includes the US Highway 101 over Feliz Creek Bridge (10 0003) and the State Route 175 over Russian River Bridge (10 0045), and considers both to be not eligible for the

National Register of Historic Places. In addition to these inventories, the Northwest Information Center base maps show the Northwestern Pacific Railroad (P-23-003663), a recorded structure, within the proposed study area.

The project site is located adjacent to the Russian River and various tributaries thereof. This portion of Sanel Valley is known to have a high potential for containing buried archaeological sites that may show no signs on the surface. Given the similarity of one or more of these environmental factors, there is a high potential of unrecorded Native American resources in the study area.

Review of historical literature and maps gave no indication of the possibility of historic-period archaeological resources within the study area. While the general vicinity of the preferred project underwent early development during the mid to late 19th century, maps from those eras and from the early 20th century fail to show any buildings or structures with the study area. With this in mind, there is a low potential of unrecorded historic-period archaeological resources within the project site.

No existing information was found on whether paleontological resources are within the study area.

Recommendations

- 1. A professional archaeologist should assess the recorded archaeological resource in the study area and provide project-specific recommendations. Please refer to the list of consultants who meet the Secretary of Interior's Standards at http://www.chrisinfo.org.
- 2. There is a high potential for Native American archaeological resources and a low potential for historic-period archaeological resources to be within the study area. It is recommended that a qualified archaeologist conduct further archival and field study to identify cultural resources within those portions of the project area that have not been subject to previous survey coverage. A good faith effort should be made to identify buried archaeological deposits that may show no signs or indications on the surface. Please refer to the list of consultants who meet the Secretary of Interior's Standards at http://www.chrisinfo.org.
- 3. The Northwestern Pacific Railroad (P-23-003663) alignment crosses the project area. The project area also includes the US Highway 101 over Feliz Creek Bridge (10 0003) and the State Route 175 over Russian River Bridge (10 0045). In addition, the Thatcher Hotel (Tax Certification No. 537.9-23-0002) is located adjacent to the proposed project area. Therefore, it may be that a Section 106 consultation with the Office of Historic Preservation regarding potential impacts to this building and structures is necessary.
- 4. Any identified cultural resources found during field studies should be recorded on DPR 523 historic resource recordation forms.

Since there is no existing information on whether paleontological resources are within the study area, a paleontological record search would need to be conducted to confirm the potential for occurrence of paleontological resources.

Hydrology and Floodplains

The Federal Emergency Management Agency's (FEMA) Flood Insurance Rate Maps (FIRM Map Numbers 06045C1851F and 06045C1853F) indicate that the preferred project is mostly located within a special flood hazard area subject to inundation by the 100-year flood (see Attachment A). The majority of the project lies within a floodway area, including the proposed bridges. The pedestrian bridges should be kept free of encroachment so that the 100-year flood can be carried without substantial increases in flood heights. In addition, the project would be required to comply with applicable floodplain standards, including the County of Mendocino Municipal Code's floodplain requirements identified in Chapter 20.120.

It is not anticipated that the nature of the proposed improvements would alter the existing drainage pattern in the area as a majority of the improvements are minor and are simply reconfiguring existing infrastructure, and design of the pedestrian bridges would comply with the County of Mendocino Municipal Code's floodplain requirements.

Water Quality and Stormwater Runoff

The construction activities within and adjacent to the Russian River, Dooley Creek, and Feliz Creek could temporarily disturb soils and result in erosion if not properly controlled and repaired. Construction could also be a source of chemical contamination from the use of alkaline construction materials (e.g., concrete, mortar, hydrated lime) and hazardous or toxic materials, such as fuels. Depending on the size and nature of the construction activities, appropriate water quality and stormwater runoff measures would likely be required during construction.

Geology and Soils

There are no major faults located within or adjacent to the study area. The study area is generally surrounded by flat land and therefore, has a low potential for landslides. However, construction of new pedestrian bridges may require site-specific geotechnical investigation. It is anticipated that the design of the pedestrian bridges would comply with any recommendations made in the geotechnical investigations.

Hazardous Waste/Materials

The Hazardous Waste and Substance Sites List (Cortese List) is a planning document used by the State, local agencies, and developers to comply with the California Environmental Quality Act (CEQA) requirements for providing information about the locations of hazardous materials release sites. In accordance with the requirements, a search of the Cortese List was completed to determine if there are any known hazardous waste facilities located on or adjacent to the preferred project site. The data resources that provide information regarding the facilities or sites identified as meeting the Cortese List requirements are: the List of Hazardous Waste and Substances sites from the Department of Toxic Substances Control (DTSC) EnviroStor database; the List of Leaking Underground Storage Tank (LUST) Sites by County and Fiscal Year from State Water Resources Control Board (SWRCB) GeoTracker database; the list of solid waste disposal sites identified by the SWRCB with waste constituents above hazardous waste levels outside

the waste management unit; the List of "active" Cease and Desist Orders and Cleanup and Abatement Orders from the SWRCB; and the List of hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code, identified by DTSC.

In reviewing the above mentioned lists, there was one open case found along U.S. 101 (in Section D as shown on Figure 1 in the Feasibility Study): a LUST cleanup site at 13501 Highway 101 (see Attachment B, Geotracker Map). The site is open, but eligible for closure, and listed for the following potential contaminates of concern: gasoline in aquifer used for drinking water supply.

There are several closed LUST Cleanup Sites within or adjacent to the study area. However, these cleanup sites are complete and were closed in 1995, 1998, 1999, and 2010, respectively.

If the project requires ground disturbance near or within the open LUST cleanup case, contaminated soil may be encountered. Appropriate measures should be in place to properly handle and dispose of contaminated material.

Air Quality and Climate Change

The study area is located within the Ukiah, Willits and Surrounding Area (Inland South) sub-basin of the North Coast Air Basin, which is within the jurisdiction of the Mendocino County Air Quality Management District (MCAQMD). The Inland South sub-basin, like the rest of Mendocino County, is designated as a non-attainment area for the State particulate matter (PM₁₀) standard. The sub-basin is in attainment for all other State standards and for all Federal criteria air pollutants. (MCAQMD 2005)

According to the MCAQMD's Particulate Matter Attainment Plan (MCAQMD 2005), the primary sources of PM₁₀ pollution in the Inland South sub-basin are wood combustion emissions (e.g. woodstoves, fireplaces and outdoor burning), fugitive dust from construction projects, automobile emissions, and industry.

Construction activities may result in air quality impacts related to the generation of dust and exhaust. Depending on the length and nature of the construction, appropriate measures may be required to control dust and exhaust during construction activities.

Operation of the project is not anticipated to create any air pollutants and only minor indirect greenhouse gas emissions from electricity use of the new lights.

Noise and Vibration

Sensitive receptors, including residential homes, are located along the US 101 and SR 175 improvement corridors. Although it is anticipated that construction activities would abide by County of Mendocino noise standards, depending on the duration of construction and type of equipment used during construction, additional measures may be necessary.

In addition, depending on the method of installation for the pedestrian bridge, vibration impacts may occur. A noise and vibration study to further investigate the potential noise and vibration impacts may be required.

Biological Resources (including Section 4(f) Properties)

Section 4(f) properties, as identified in the Department of Transportation Act of 1966, include publicly owned parks, recreational areas, wildlife and waterfowl refuges, or public and private historical sites listed or eligible for listing on the National Register of Historic Places. There are no parks, recreation areas, and wildlife or waterfowl refuges near the study area. With regard to historic properties, please refer to the Historic/Cultural/Paleontological Resources section above for additional information.

A California Natural Diversity Database (CNDDB) record search was conducted, which showed one known special-status species within and adjacent to the study area. Western pond turtle (*Emys marmorata*), a State Species of Special Concern, is known to occur within the Russian River, and consequently, likely in Dooley Creek and Feliz Creek as well (CNDDB 2015). Appropriate surveys and measures would be required if work were to occur within the Russian River and/or the creeks.

In addition, as the CNDDB is not inclusive, further biological investigation would be needed to determine the potential for other special status species to occur in sensitive areas such as the Russian River, Dooley Creek, and Feliz Creek, including bats that may roost beneath the bridges where improvements would occur.

The Migratory Bird Treaty Act (MBTA) precludes destruction or harassment of active bird nests for most bird species. There is the potential for nesting birds to occur within bushes and/or trees adjacent to or within the project site (particularly along the Russian River and the creeks). Work near potential nesting habitats as well as any tree removal required as part of the project could be subject to specific work windows.

Cumulative Impacts

Cumulative impacts refer to two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts. At this time it is not known what potential projects may occur at the same time as implementation of the Hopland Main Street Corridor plan, or that may result in cumulative impacts to which the plan would contribute. This will be evaluated once project activities have been better defined and a general timeline has been determined.

Resource Agency Permitting Requirements

Federal

U.S. Army Corps of Engineers – Section 404/Section 10

Under the Federal Clean Water Act, a Section 404 Permit is needed for the permanent disposal of fill into jurisdictional waters (i.e. Waters of the U.S.). Under the Rivers and Harbors Act, a Section 10 permit is required for work or structures in, under, or over navigable waters of the U.S., or which affects the course, location, condition or capacity of such waters. The project would involve the placement of pedestrian bridges over Russian River and Dooley Creek. If the bridges were designed in such a manner as to place fill in jurisdictional waters (below the ordinary high water mark), an Army Corps permit would be required.

The Army Corps will not issue a permit until a Water Quality Certification is granted from the San Francisco Regional Water Quality Control Board pursuant to its authority under Section 401 of the federal Clean Water Act. In addition, as part of the Section 404/Section 10 process, the Army Corps must consult with the agencies below for concurrence with its decision to issue a permit.

U.S. Fish & Wildlife Service (USFWS)/National Marine Fisheries Service (NMFS) – Section 7 Consultation

If a project may affect species or migratory fish listed under the Federal Endangered Species Act, then the Army Corps will initiate consultation with the USFWS and/or NMFS under Section 7 of the Endangered Species Act (ESA). The USFWS and NMFS share responsibility for administering the ESA; the USFWS has primary responsibility for terrestrial and freshwater species, while NMFS is mainly responsible for marine species.

Section 7 consultations are based on a Biological Assessment (BA), which provides necessary information on any listed species and/or critical habitat present in the project area (also called the action area) and the Project's potential to adversely affect the species and critical habitat. The BA then evaluates the potential impacts to any known protected species and proposes mitigation to reduce any potential impacts to those species.

Section 7 consultations can be "informal" or "formal". Informal consultation determines the likelihood of adverse effects on a listed species or critical habitat and identifies and establishes mitigation measures or project modifications to reduce or avoid adverse effects on these species and habitats. If the federal agency (in this case, the Army Corps), determines that the Project is "not likely to adversely affect" (or "may affect, but is not likely to adversely affect") listed species or critical habitat, the USFWS and/or NMFS will issue a letter of concurrence (i.e., letter of no effect) and consultation is concluded.

If, even after going through the informal consultation process, the project may still affect listed species or designated critical habitat, then formal consultation is required and the USFWS and/or NMFS will issue a Biological Opinion. A Biological Opinion will contain resource-specific mitigation and restoration requirements that will avoid take and adverse effects to the special-status species.

State Historic Preservation Office (SHPO)

Consultation with SHPO is required as part of the Section 404/Section 10 permitting process if cultural resources are known to exist within the project construction zone (also called the Area of Potential Effect or APE). The reason for defining an APE is to determine the area in which cultural resources must be identified, so that effects to any identified resources can, in turn, be assessed. Consultation with SHPO can require extensive coordination activities and can take up to a year. The Army Corps will ask SHPO to concur with its decision to issue its permit. As noted above, there are historic structures within the project area which may require consultation with SHPO.

State

San Francisco Bay Regional Water Quality Control Board (RWQCB) – Section 401 Water Quality Certification/Waste Discharge Requirements (WDR)

Under Section 401 of the Federal Clean Water Act, the State must certify that any activity subject to a permit issued by a federal agency, such as the Army Corps, meets all State water quality standards. In California, the State water quality standards are codified in the Porter-Cologne Water Quality Control Act. The State Water Resources Control Board (SWRCB) and the nine Regional Boards are responsible for taking certification actions for activities subject to any permit issued by the Army Corps pursuant to Section 404 and/or Section 10. The resulting approval is referred to as a Water Quality Certification. The North Coast Regional Water Quality Control Board (RWQCB) is the applicable certifying agency for the project.

If any type of discharge of waste into waters of the State (below top of bank) is proposed as part of the Project, the RWQCB may also need to issue Waste Discharge Requirements (WDRs). Both of the terms "discharge of waste" and "waters of the State" are broadly defined in the Federal Clean Water Act to mean that discharges of waste include fill, any material resulting from human activity, or any other "discharge" that may directly or indirectly impact "waters of the State." This can be done through the same application process as the Water Quality Certification, and the RWQCB will determine if WDRs also need to be issued for the project.

California Department of Fish and Wildlife (CDFW) Northern Region – Section 1602, Lake and Streambed Alteration Program

Notification to the CDFW is required for any activity that proposes to deposit or dispose of debris, waste, or other material where it may pass into any river, stream, or lake. As CDFW's jurisdiction under Section 1600 includes the subsurface and riparian zones, construction activities within the riparian areas would be subject to this agreement.

The Russian River, Dooley Creek, and Feliz Creek occur within the study area and may be impacted as part of the project. Therefore, a Notification of Lake or Streambed Alteration would be required pursuant to Section 1602 of the Fish and Game Code.

CDFW Northern Region - Section 2081 Incidental Take

CDFW must be consulted pursuant to the California Endangered Species Act (CESA), Sections 2081(b) and (c) if construction of the project would result impacts to State-listed species. CESA states that all native plant and wildlife species threatened with extinction and those experiencing a significant decline which, if not halted, would lead to a threatened or endangered designation, will be protected or preserved. However, CESA also allows for "take" incidental to otherwise lawful development projects.

Site-specific biological studies would reveal whether there are any State-listed special status species that could be impacted within the project area. If there were, CDFW consultation would begin with their review of a Biological Assessment (BA). The BA should be tailored to CDFW, and include a conclusion of whether or not the project will result in "take" of listed species, as defined in Section 86 of the CDFG Code.

References

- California Department of Fish and Wildlife Service (CDFW). 2015. California Natural Diversity Database. June.
- California Department of Transportation (Caltrans). *California Scenic Highway Mapping System, Mendocino County*. Accessed January 8, 2013: <u>http://www.dot.ca.gov/hq/LandArch/scenic_highways/index.htm</u>

Mendocino County. 2009. Mendocino County General Plan. August.

Mendocino County. 2015. Zoning Display Map - Hopland.

Mendocino County Air Quality Management District. 2005. Particulate Matter Attainment Plan. January.

- State Water Resources Control Board (SWRCB). 2014a. *Geotracker*. Database Accessed June 2015 at: http://geotracker.waterboards.ca.gov/.
- SWRCB. 2014b. Sites Identified with Waste Constituents Above Hazardous Waste Levels Outside the Waste Management Unit.

SWRCB. 2014c. List of Active CDO and CAO Sites from Water Board.

Whitlock & Weinberger Transportation, Inc. (W-Trans). 2015. Hopland Main Street Corridor Engineered Feasibility Study.

Attachment A FEMA Firm Maps

Attachment B Geotracker Map

STATE WATER RESOURCES CONTROL BOARD GEOTRACKER V .GC

Skip to: Content | Footer

GeoTracker Home Tools Reports Information SWRCB Home

CASE SUMMARY						
REPORT DATEHAZARDOUS N10/23/1997	ATERIAL INCIDENT REPORT FILED WITH OF	<u>ES?</u>				
I. REPORTED BY - UNKNOWN	<u>CREATED E</u> UNKNOWN	<u>3Y</u>				
III. SITE LOCATION FACILITY NAME Hopland Farms	FACILITY ID					
FACILITY ADDRESS 13501 Highway 101, South Hopland, CA 95449	ORIENTATION OF SITE TO STREE	T				
MENDOCINO COUNTY V. SUBSTANCES RELEASED / CONTA	MENDOCINO COUNTY V. SUBSTANCES RELEASED / CONTAMINANT(S) OF CONCERN					
GASOLINE VI. DISCOVERY/ABATEMENT	GASOLINE VI. DISCOVERY/ABATEMENT					
DATE DISCHARGE BEGAN DATE DISCOVERED 10/23/1997	HOW DISCOVERED Other Means	DESCRIPTION				
DATE STOPPED 10/23/1997	STOP METHOD	DESCRIPTION				
VII. SOURCE/CAUSE SOURCE OF DISCHARGE	CAUSE OF DISCHA	RGE				
VIII. CASE TYPE						
Aquifer used for drinking water supply IX. REMEDIAL ACTION						
NO REMEDIAL ACTIONS ENTERED						
A. GENERAL COMMENTS						
XI. CERTIFICATION I HEREBY CERTIFY THAT THE INFORMATION REPORTED HEREIN IS TRUE AND ACCURATE TO THE BEST OF MY KNOWLEDGE.						
XII. REGULATORY USE ONLY						

GeoTracker

LOCAL AGENCY CASE NUM	BER	<u>REGIONAL BOARD C</u> 1TMC370	ASE NUMBER
LOCAL AGENCY			
CONTACT NAME WAYNE BRILEY	INITIALS	ORGANIZATION_NAME MENDOCINO COUNTY	EMAIL ADDRESS
ADDRESS 501 LOW GAP ROAD, ROOM UKIAH, CA 95482	1 1326	<u>CONTACT D</u>	ESCRIPTION
PHONE TYPE	PHONE N	UMBER	EXTENSION
office	(707)-234-	-6648	
REGIONAL BOARD			
CONTACT NAME IN CRAIG HUNT CS	ITIALS ORGANIZ	ZATION_NAME COAST RWQCB (REGION 1)	EMAIL ADDRESS craig.hunt@waterboards.ca.gov
ADDRESS 5550 SKYLANE BOULEVARE SANTA ROSA, CA 95403	D, SUITE A	CONTAC	TDESCRIPTION
PHONE TYPE	PHONE N	UMBER	EXTENSION
FAX	(707)-523-	-0135	
MAIN	(707)-576-	-2220	

Back to Top | Contact Us

Copyright © 2015 State of California